SlideShare a Scribd company logo
1 of 17
Download to read offline
IV
1.8 GHz
(rfsys.ntut@gmail.com)
April 2014
1
(Advanced Design System, ADS)
I ADS II DCS
1900 III
IV
ADS
2
4.1
4.2
1.
( )
4.1 (Barkhausen’s Criteria)
( ) ( )G s H s 1(
( ) ( ) 1G s H s = − ) 4.1 ( )G s ( ( )G s )
( ( )H s )
(
)
( ) ( )G s H s
+
+
)(sG
)(sH
oViV
fV
fod VVV +=
sf
f
)(sH
)()(1
)(
)(
sHsG
sG
V
V
sG
i
o
f
⋅−
==
1)()( =⋅ sHsG (Phase is 0 deg. or multiple of 360 deg.)
Barkhausen’s Criteria:
Resonator
Amplifier
4.1
3
4.2 ( ) ( )
( )
11 1S′ >
( ) GΓ 11S′
11G S′Γ ⋅ 1( ( ) ( )G s H s 1)
22 1S′ > ( )
22 1L S′Γ ⋅ =
11 1G S′Γ ⋅ = 22 1L S′Γ ⋅ =
ADS term GΓ 11S′
4.3 11 1G S′Γ ⋅ = (
ADS )
Resonator
Output
Network0Z 0Z
1a 2a
1b 2b
][S
inZ outZ
)( 1Γ )( 2Γ
LZ
)( LΓ
GZ
)( GΓ
'
11S
'
22S
1'
11 =⋅Γ SG
1'
22 =⋅Γ SL
If it is oscillating at one port, it must be
simultaneously oscillating at the other port.
Two-port Reflection:
4.2
Resonator
GZ
)( GΓ
Output
Network0 0Z
1a 2a
1b 2b
][S
inZ outZ
)( 1Γ )( 2Γ
LZ
)( LΓ
'
11S
'
22S
Term
Term1
Z=50 Ohm
Num=1
Term
Term2
Z=50 Ohm
Num=2
4.3
4
4.4
( )
( )
( )R ω ( )DR ω
( ) ( ) 0DX Xω ω+ = ( 0
)
LRResonator
I
)()()( ωωω jXRZ +=
0)(and,)()()( >+−=− IRIjXIRIZ DDDD
)(tv)(tvD
One-port Negative Resistance:
0)()( =− ωω DRR
0)()( =+ ωω DXX
( ) ( ) ( )Z j R jXω ω ω= +
( ) ( ) ( )D D DZ j R jXω ω ω− = − + ( ) 0DR ω >
4.4
2.
4.5 Colpitts Hartley
(Topology) Hartley
Clapp Siler Copitts
LC LC
LC
( )
( )1 2f LCπ= (
) 4.5
(
)
5
bi
ci
C
E
B
1C
2C
3L
bi
ci
C
E
B
1L
2L
3C
bi
ci
C
E
B
1C
2C
3L
bi
ci
C
E
B
1C
2C
3L
Colpitts Hartley
Clapp Siler
4.5
4.3
1. oscillator ADS
Copy a reference design “Osctest_VCO.dsn” from ADS examples:
..examplesTutorialLearnOSC_prjnetworks
To your project:
oscillator_prjnetworks
4.6 ADS
6
2. ( )
4.7 Osctest_VCO.dsn
OscTest
OscTest
( S_Param
) Z OscTest Start Stop Points
Z ( 1 0
) OscTest
VB
Vout
VE
VE VEVres
1.8 GHz Voltage-Controlled Oscillator
S-PARAMETER OSCTEST for Loop Gain
L
L2
R=
L=2 nH
L
R1
R=422
L=100 nH
V_DC
SRC2
Vdc=-5 V
V_DC
SRC3
Vdc=12 V
L
R2
R=681-Rbias
L=100 nH
R
R3
R=50 Ohm
C
C2
C=1000 pF
I_Probe
ICC
C
C1
C=10 pF
ap_dio_MV1404_19930601
D1
L
L1
R=
L=1000 nH
V_DC
SRC1
Vdc=4.0 V
OscTest
OscTickler
Z=1.1 Ohm
Start=0.5 GHz
Stop=4.0 GHz
Points=201
VAR
VAR1
Rbias=50
Eqn
Var
R
R4
R=Rbias
pb_hp_AT41411_19921101
Q2
Resonator Active Part
(include load network)
Varactor: Voltage-controlled capacitor
OscTest
OscTest is a controller base on S-parameter
simulation to determine if the circuit oscillates.
4.7 1.8 GHz
4.8 osc_test.ds dataset
S(1,1) OscTest (Polar plot)
1 4.8
(1+j0) S(1,1) 1
S11>1 S(1,1)
(1+j0) Maker m1 1.172
0 1.41 GHz 1 GHz
2 GHz ( 1.41 GHz 200 MHz, 5 GHz )
7
-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2-1.4 1.4
freq (500.0MHz to 4.000GHz)
S(1,1)
m1
m1
freq=
S(1,1)=1.172 / 0.975
1.410GHz
Setup the dataset named: osc_test, and data
display named: osc_basics.
Show S(1,1) on
a Polar-plot
When the x-axis value of
1.0 is circled by the
trace(because S11 > 1), it
means that the circuit
oscillates. This is the
purpose of the OscTest
component.
S11 > 1
4.8 S(1,1) ( )
4.9 S(1,1) 1 885
MHz 25
0 1.445 GHz 1.1
1.8 GHz 1.8 GHz −6.6 1.08
1.0 1.5 2.0 2.5 3.0 3.50.5 4.0
-20
-10
0
10
20
30
-30
40
freq, GHz
phase(S(1,1))
m4
m5
m4
f req=
phase(S(1,1))=0.005
1.445GHz
m5
f req=
phase(S(1,1))=-6.604
1.795GHz
1.0 1.5 2.0 2.5 3.0 3.50.5 4.0
0.6
0.7
0.8
0.9
1.0
1.1
1.2
0.5
1.3
freq, GHz
mag(S(1,1))
m2 m3
m2
f req=
mag(S(1,1))=1.013
885.0MHz
m3
f req=
mag(S(1,1))=1.009
3.982GHz
Around 1.8 GHz (Marker m5), the phase is not 0o, but this is OK at
this time. The harmonic-balance simulation will be performed later.
S11 > 1 above 880 MHz
The device is unstable and
has a chance to oscillate.
4.9 S(1,1)
3. ( )
4.10 Osctest_VCO.dsn OscTest HB
OscPort OscPort HB V
8
(HB AC ) NumOctaves
Freq[1] Freq[1] 4.10 Freq[1]
1 GHz OscPort NumOctaves 2
0.5 GHz (1 GHz Octave) 2 GHz (1 GHz
Octave) Freq[1] 2 Octave OscPort Steps
0.5 GHz 2 GHz
10 Q Steps
FundIndex = 1 HB Freq[1] 1 GHz
1 GHz Freq[1] OscPort
OscPort
OscPort index = 1 Freq[1]
HB Order[1] 7 3 7 15
31 ( DC
4 8 16 32 2 )
7 Order[1]
StatusLevel 3 OscMode OscPortName
OscPort
VE
VE VEVres
VB
HarmonicBalance
HB1
OscPortName="Osc1"
OscMode=yes
StatusLevel=2
Order[1]=7
Freq[1]=1.0 GHz
HARMONIC BALANCE
OscPort
Osc1
MaxLoopGainStep=
FundIndex=1
Steps=10
NumOctaves=2
Z=1.1 Ohm
V=
V_DC
SRC1
Vdc=4.0 V
L
L1
R=
L=1000 nH
ap_dio_MV1404_19930601
D1
C
C1
C=10 pF
L
L2
R=
L=2 nH
L
R1
R=422
L=100 nH
V_DC
SRC2
Vdc=-5 V
pb_hp_AT41411_19921101
Q2
OscPort
Enable the oscillation analysis
with “Use Oscport” method.
Oscport HB simulation
attempts to find the correct
oscillating frequency using
loop gain and current
(Barkhausen’s Criteria).
3
4.10 OscPort
9
Dataset osc_port.ds Data Display
( Freq[1]) 1.806 GHz 4.11
Vout ( dBm() ) plot_vs(dBm(Vout), freq)
x (fundamental)
( 50 dBm() )
ts() 4.12
Eqn loop_current=real(ICC.i[0])
Eqn osc_freq=freq[1]
loop_current
-0.011
osc_freq
1.806E9
m6
harmindex=
dBm(Vout)=7.318
1
1 2 3 4 5 60 7
-30
-20
-10
0
-40
10
harmindex
dBm(Vout)
m6
m6
harmindex=
dBm(Vout)=7.318
1
harmindex
0
1
2
3
4
5
6
7
freq
0.0000 Hz
1.806 GHz
3.611 GHz
5.417 GHz
7.222 GHz
9.028 GHz
10.83 GHz
12.64 GHz
harm_power
<invalid>
7.318
-2.208
-17.501
-17.061
-27.317
-27.815
-35.340
Eqn harm_power=dBm(Vout[0::1::7])
2 4 6 8 10 120 14
-30
-20
-10
0
-40
10
freq, GHz
dBm(Vout)
Fundamental Frequency (oscillation frequency)
Use dBm( ) to show the signal power
(Note: x-axis is “harmonic index”)
Use plot_vs( )to show the signal
power versus frequency.
(Note: x-axis is now “frequency”)
4.11
-600
-500
-400
-300
-700
-200
ts(Vres),mV
-400
-200
0
200
-600
400
ts(VB),mV
-600
-500
-400
-300
-700
-200
ts(VE),mV
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.10.0 1.2
-0.5
0.0
0.5
-1.0
1.0
time, nsec
ts(Vout),V
4.12 ts( )
10
4. (Frequency Tuning Sensitivity)
(Voltage-controlled oscillator, VCO)
(Varactor)
( Tuning sensitivity KV
) MHz/V 1 V KV
1 KV
KV KV
( )
HB1 HB HB2
1.8 GHz Freq[1] 1.8 GHz Vtune
Vtune 0 V 10 V Step 0.25 V
Dataset osc_tune Tune_Step Dataset
Freq[1] Vtune
Vres
HarmonicBalance
HB2
Step=Tune_Step
Stop=Tune_Stop
Start=Tune_Start
SweepVar="Vtune"
OscPortName="Yes"
OscMode=yes
StatusLevel=3
Order[1]=7
Freq[1]=1.8 GHz
HARMONIC BALANCE
VAR
VAR2
Tune_Step=0.25
Tune_Stop=10
Tune_Start=0
Vtune=4 V
Rbias=50
Eqn
Var
HarmonicBalance
HB1
OscPortName="Osc1"
OscMode=yes
StatusLevel=3
Order[1]=7
Freq[1]=1.8 GHz
HARMONIC BALANCE
V_DC
SRC1
Vdc=Vtune
OscPort
Osc1
MaxLoopGainStep=
FundIndex=1
Steps=10
NumOctaves=2
Z=1.1 Ohm
V=
L
L1
R=
L=1000 nH
ap_dio_MV1404_19930601
D1
C
C1
C=10 pF
Pass the variable “Tune_Step” to dataset Plot oscillating frequency v.s. Tuning voltage
“Osc1”
4.13
11
Freq[1] Vtune 4.14 KV
Freq[1] Vtune 4.14 Maker
(diff() ) Vtune
Vtune( ) KV
KV (
)
Vtune 18 V 4.15
12 V ( )
Eqn osc_freq=freq[1]
m7
indep(m7)=
plot_vs(freq[1], Vtune)=1.806E9
4.000
m8
indep(m8)=
plot_vs(freq[1], Vtune)=1.903E9
6.500
1 2 3 4 5 6 7 8 90 10
1.75
1.80
1.85
1.90
1.95
2.00
2.05
1.70
2.10
Vtune
freq[1],GHz
m7
m8
m7
indep(m7)=
plot_vs(freq[1], Vtune)=1.806E9
4.000
m8
indep(m8)=
plot_vs(freq[1], Vtune)=1.903E9
6.500
Eqn Tuning_Sensitivity=diff(freq[1])/Tune_Step[0]
1 2 3 4 5 6 7 8 90 10
6.0E7
8.0E7
1.0E8
1.2E8
1.4E8
1.6E8
4.0E7
1.8E8
Vtune
Tuning_Sensitivity
1.75E9 1.80E9 1.85E9 1.90E9 1.95E9 2.00E91.70E9 2.05E9
6.0E7
8.0E7
1.0E8
1.2E8
1.4E8
1.6E8
4.0E7
1.8E8
osc_freq[0::1::(tune_pts-1)]
Tuning_Sensitivity
Eqn f_pts=sweep_size(osc_freq)
f_pts
41
tune_pts
40
Eqn tune_pts=sweep_size(Tuning_Sensitivity)
Eqn Tuning_Sensitivity_band=(m8-m7)/(indep(m8)-indep(m7))
Tuning_Sensitivity_band
3.904E7
m7
1.806E9
m8
1.903E9
Oscillating frequency v.s. Tuning voltage Calculate tuning sensitivity from
makers m7 and m8
Calculate sensitivity by using
diff() function.
Note: Since no “padding” with diff(),
there will be 1 point less than freq[1]
points.
Sensitivity v.s. Vtune Sensitivity v.s. Frequency
4.14
VAR
VAR2
Tune_Step=0.25
Tune_Stop=18
Tune_Start=0
Vtune=4 V
Rbias=50
Eqn
Var
2 4 6 8 10 12 14 160 18
1.7
1.8
1.9
2.0
2.1
1.6
2.2
Vtune
freq[1],GHz
m7
m8
m7
indep(m7)=
plot_vs(freq[1], Vtune)=1.806E9
4.000
m8
indep(m8)=
plot_vs(freq[1], Vtune)=2.134E9
12.000Sweep Vtune up to 18 V
The diode is breakdown
above 12 V (acts like a
resistor), it no longer acts
like a variable capacitor.
Diode = Varactor
Maximum oscillating
frequency is 2.13 GHz
4.15
12
5. (Source Pushing)
(Frequency pushing figure) (voltage source)
(Source pushing)
4.16 5 V 20 V
0.25 V Dataset osc_push
Vres
VAR
VAR2
Tune_Step=0.25 V
Tune_Stop=20 V
Tune_Start=5 V
Vtune=4 V
Vbias=12 V
Rbias=50
Eqn
Var
HarmonicBalance
HB2
Step=Tune_Step
Stop=Tune_Stop
Start=Tune_Start
SweepVar="Vbias"
OscPortName="Yes"
OscMode=yes
StatusLevel=3
Order[1]=7
Freq[1]=1.8 GHz
HARMONIC BALANCE
HarmonicBalance
HB1
OscPortName="Osc1"
OscMode=yes
StatusLevel=3
Order[1]=7
Freq[1]=1.8 GHz
HARMONIC BALANCE
V_DC
SRC1
Vdc=Vtune
L
L1
R=
L=1000 nH
ap_dio_MV1404_19930601
D1
C
C1
C=10 pF
Vout
V_DC
SRC3
Vdc=Vbias
L
R2
R=681-Rbias
L=100 nH
R
R3
R=50 Ohm
C
C2
C=1000 pF
I_Probe
ICC
Change the supply voltage
to a variable “Vbias”Sweep the supply voltage “Vbias” from 5 V to
20 V while Vtune is now held constantly at 4 V.
(In practice, Vtune is set to a voltage that oscillator oscillates
at “target” center frequency.)
4.16
4.17 source pushing
12 V source pushing
source pushing figure 21.77 MHz/V
m9
indep(m9)=
plot_vs(freq[1], Vbias)=1.825E9
13.000
m10
indep(m10)=
plot_vs(freq[1], Vbias)=1.781E9
11.000
6 8 10 12 14 16 184 20
0.5
1.0
1.5
0.0
2.0
Vbias
freq[1],GHz
m9m10
m9
indep(m9)=
plot_vs(freq[1], Vbias)=1.825E9
13.000
m10
indep(m10)=
plot_vs(freq[1], Vbias)=1.781E9
11.000
Eqn Source_pushing=(m9-m10)/(indep(m9)-indep(m10))
Source_pushing
2.177E7
Plot freq[1] v.s. Vbias to
show the source pushing
results. Here, use makers
and equations to calculate
the pushing figure around
Vbias = 12 V. As we can see,
this oscillator has the source
pushing figure equals to
21.77 MHz/V.
4.17
13
6. (Load Pulling)
(Frequency pulling figure) (load)
(Load pulling) 50
( )
50
Osctest_VCO.dsn Osctest_VCO_pull.dsn HB HB1
HB2 HB HB3
50 S1P_Eqn S1P_Eqn
VSWR ( ) Load pulling VSWR
25 MHz@VSWR=1.2 VSWR 1.2
25 MHz 4.18
VSWR VSWR (0 2π VSWR
) VSWRval phi VSWRval
ParamSweep HB3 HB3 Dataset
Vout
VAR
VAR1
VSWRval=1
phi=0
nvw=11
vw2=2
vw1=1
Eqn
Var
HarmonicBalance
HB3
Step=0.1
Stop=2
Start=0
SweepVar="phi"
OscPortName="Yes"
OscMode=y es
StatusLev el=3
Order[1]=7
Freq[1]=1.8 GHz
HARMONIC BALANCE
VAR
VAR7
rho=(VSWRv al-1)/(VSWRv al+1)
iload=rho*sin(pi*phi)
load=rho*exp(j*pi*phi)
rload=rho*cos(pi*phi)
Eqn
Var
ParamSweep
Sweep1
Lin=nvw
Stop=vw2
Start=vw1
SweepVar="VSWRval"
PARAMETER SWEEP
S1P_Eqn
Buf f erLoad
S[1,1]=load
C
C2
C=1000 pF
vw1: VSWR sweep start
vw2: VSWR sweep stop
nvw: num. of VSWR sweep
real part of load
sweep load
Image part of load
Sweep load for different constant VSWR circles in Smith chart.
Save these variables in dataset
4.18
14
VSWR 4.19 (
) Rectangular plot Trace Expression
marker ( m12) m12
VSWR 4.20 VSWR
VSWR ( phi 0 2π)
Rectangular plot VSWR
( VSWR=1.2) phi ( )
( 1.806 GHz) df_peak
VSWR = 1.2
m12
indep(m12)=
vs([0::sweep_size(VSWRval)-1],VSWRval)=2.000
1.200
Eqn refl=rload+j*iload
Eqn vswr_k=(nvw[0,0]-1)*(indep(m12)-vw1[0,0])/(vw2[0,0]-vw1[0,0])
Eqn VSWR=vswr_k*(vw2[0,0]-vw1[0,0])/(nvw[0,0]-1)+(vw1[0,0])
Eqn LoadRefl=mag(refl[::,1])
Eqn df_peak=max(abs(freq[vswr_k,::,1]-1.806e9))
df_peak
3.202E7
Load Pulling Figure @ VSRW=1.200
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.91.0 2.0
VSWR
m12
m12
indep(m12)=
vs([0::sweep_size(VSWRval)-1],VSWRval)=2.000
1.200
Write down these equations for load pulling figure measurement
@certain VSWR value. (You can change VSWR by scrolling marker m12)
Find peak frequency that deviates
from center frequency 1.086 GHz.
4.19
phi (0.000 to 2.000)
refl[vswr_k,::]
m12
indep(m12)=
vs([0::sweep_size(VSWRval)-1],VSWRval)=2.000
1.200
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.91.0 2.0
VSWR
m12
m12
indep(m12)=
vs([0::sweep_size(VSWRval)-1],VSWRval)=2.000
1.200
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80.0 2.0
0.65
0.70
0.75
0.80
0.85
0.60
0.90
phi ( *pi radians)
mag(Vout[vswr_k,::,1])
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80.0 2.0
1.7800G
1.7900G
1.8000G
1.8100G
1.8200G
1.8300G
1.7700G
1.8400G
phi ( *pi radians)
freq[vswr_k,::,1],Hz
Eqn refl=rload+j*iload
Eqn vswr_k=(nvw[0,0]-1)*(indep(m12)-vw1[0,0])/(vw2[0,0]-vw1[0,0])
Eqn VSWR=vswr_k*(vw2[0,0]-vw1[0,0])/(nvw[0,0]-1)+(vw1[0,0])
Eqn LoadRefl=mag(refl[::,1])
Frequency variation for VSWR = 1.20
Eqn df_peak=max(abs(freq[vswr_k,::,1]-1.806e9))
df_peak
3.202E7
Load Pulling Figure @ VSRW=1.200
Constant VSWR circleVout amplitude variations
Frequency variations
use @VSWR in the text to show the number
4.20
15
7.
ADS
Osctest_VCO.dsn HB 4.21
Order 15( 7 )
ADS Oversample[1] 4 PhaseNoise yes
HB Noise Nonlinear noise
Noise(1) Noise(2) ADS
pnmx ( ) dBc
dBc/Hz( ADS Hz y
/Hz ) 10 kHz
−78.39 dBc/Hz( −78.39 dBc/Hz@10 kHz)
−98.34 dBc/Hz@100 kHz −118.08 dBc/Hz@1 MHz
HarmonicBalance
HB1
OscPortName="Osc1"
OscMode=yes
SortNoise=Sort by value
NoiseNode[1]="Vout"
PhaseNoise=yes
NLNoiseDec=5
NLNoiseStop=10.0 MHz
NLNoiseStart=1.0 Hz
Oversample[1]=4
StatusLevel=3
Order[1]=15
Freq[1]=1.8 GHz
HARMONIC BALANCE
Phase Noise Simulation Setup
4.21
m11
noisefreq=
pnmx=-78.390
10.00kHz
m13
noisefreq=
pnmx=-98.340
100.0kHz
m14
noisefreq=
pnmx=-118.079
1.000MHz
1E1 1E2 1E3 1E4 1E5 1E61 1E7
-120
-100
-80
-60
-40
-20
0
-140
20
noisefreq, Hz
pnmx,dBc
m11
m13
m14
m11
noisefreq=
pnmx=-78.390
10.00kHz
m13
noisefreq=
pnmx=-98.340
100.0kHz
m14
noisefreq=
pnmx=-118.079
1.000MHz
4.22 (pnmx)
16
4.4
HB

More Related Content

What's hot

射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路Simen Li
 
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計Simen Li
 
射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計Simen Li
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介Simen Li
 
射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計Simen Li
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計Simen Li
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配Simen Li
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論Simen Li
 
傳輸線理論
傳輸線理論傳輸線理論
傳輸線理論祁 周
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Simen Li
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsSimen Li
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkSimen Li
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversSimen Li
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheorySimen Li
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisSimen Li
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧Simen Li
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsSimen Li
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and LinearitiesSimen Li
 

What's hot (20)

射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
 
射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論
 
PA linearity
PA linearityPA linearity
PA linearity
 
傳輸線理論
傳輸線理論傳輸線理論
傳輸線理論
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and Linearities
 

Viewers also liked

全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版Simen Li
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterSimen Li
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosSimen Li
 
電路學 - [第一章] 電路元件與基本定律
電路學 - [第一章] 電路元件與基本定律電路學 - [第一章] 電路元件與基本定律
電路學 - [第一章] 電路元件與基本定律Simen Li
 
電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法Simen Li
 
ESP8266 and IOT
ESP8266 and IOTESP8266 and IOT
ESP8266 and IOTdega1999
 
Implementation of the ZigBee ZCL Reporting Configuration Features
Implementation of the ZigBee ZCL Reporting Configuration FeaturesImplementation of the ZigBee ZCL Reporting Configuration Features
Implementation of the ZigBee ZCL Reporting Configuration FeaturesSimen Li
 
NodeMCU ESP8266 workshop 1
NodeMCU ESP8266 workshop 1NodeMCU ESP8266 workshop 1
NodeMCU ESP8266 workshop 1Andy Gelme
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
電磁波健康效應之評估報告
電磁波健康效應之評估報告電磁波健康效應之評估報告
電磁波健康效應之評估報告Wei Chung Chang
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件Simen Li
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack FirmwareSimen Li
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理Simen Li
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversSimen Li
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. TableSimen Li
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Simen Li
 

Viewers also liked (16)

全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
電路學 - [第一章] 電路元件與基本定律
電路學 - [第一章] 電路元件與基本定律電路學 - [第一章] 電路元件與基本定律
電路學 - [第一章] 電路元件與基本定律
 
電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法
 
ESP8266 and IOT
ESP8266 and IOTESP8266 and IOT
ESP8266 and IOT
 
Implementation of the ZigBee ZCL Reporting Configuration Features
Implementation of the ZigBee ZCL Reporting Configuration FeaturesImplementation of the ZigBee ZCL Reporting Configuration Features
Implementation of the ZigBee ZCL Reporting Configuration Features
 
NodeMCU ESP8266 workshop 1
NodeMCU ESP8266 workshop 1NodeMCU ESP8266 workshop 1
NodeMCU ESP8266 workshop 1
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
電磁波健康效應之評估報告
電磁波健康效應之評估報告電磁波健康效應之評估報告
電磁波健康效應之評估報告
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 

Similar to Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

Malik - Formal Element Report
Malik - Formal Element ReportMalik - Formal Element Report
Malik - Formal Element ReportJunaid Malik
 
Real 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxReal 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxSaiGouthamSunkara
 
STM_ADC para microcontroladores STM32 - Conceptos basicos
STM_ADC para microcontroladores STM32 - Conceptos basicosSTM_ADC para microcontroladores STM32 - Conceptos basicos
STM_ADC para microcontroladores STM32 - Conceptos basicosps6005tec
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copyKitTrnTun5
 
Electronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th edElectronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th edMobin Hossain
 
Electronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfElectronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfGollapalli Sreenivasulu
 
Uc3842 b d fuente 24vdc stacotec
Uc3842 b d  fuente 24vdc stacotecUc3842 b d  fuente 24vdc stacotec
Uc3842 b d fuente 24vdc stacotectavobecker
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing ssuser2797e4
 
Original Mosfet IRF9530N TO220 14A 100V New
Original Mosfet IRF9530N TO220 14A 100V NewOriginal Mosfet IRF9530N TO220 14A 100V New
Original Mosfet IRF9530N TO220 14A 100V NewAUTHELECTRONIC
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewAUTHELECTRONIC
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfNahshonMObiri
 
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovablesJordi Cusido
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Gallian394
 
Original N-Channel Mosfet IRFZ24N IRFZ24 TO-220 New Infineon Technologies
Original N-Channel Mosfet IRFZ24N IRFZ24 TO-220 New Infineon TechnologiesOriginal N-Channel Mosfet IRFZ24N IRFZ24 TO-220 New Infineon Technologies
Original N-Channel Mosfet IRFZ24N IRFZ24 TO-220 New Infineon TechnologiesAUTHELECTRONIC
 
Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...
Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...
Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...AUTHELECTRONIC
 
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IROrriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IRAUTHELECTRONIC
 
Variable frequencyresponseanalysis8ed
Variable frequencyresponseanalysis8edVariable frequencyresponseanalysis8ed
Variable frequencyresponseanalysis8edxebiikhan
 
Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...
Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...
Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...AUTHELECTRONIC
 

Similar to Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬 (20)

Malik - Formal Element Report
Malik - Formal Element ReportMalik - Formal Element Report
Malik - Formal Element Report
 
Real 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxReal 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptx
 
STM_ADC para microcontroladores STM32 - Conceptos basicos
STM_ADC para microcontroladores STM32 - Conceptos basicosSTM_ADC para microcontroladores STM32 - Conceptos basicos
STM_ADC para microcontroladores STM32 - Conceptos basicos
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copy
 
Electronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th edElectronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th ed
 
Electronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfElectronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdf
 
Uc3842 b d fuente 24vdc stacotec
Uc3842 b d  fuente 24vdc stacotecUc3842 b d  fuente 24vdc stacotec
Uc3842 b d fuente 24vdc stacotec
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
Original Mosfet IRF9530N TO220 14A 100V New
Original Mosfet IRF9530N TO220 14A 100V NewOriginal Mosfet IRF9530N TO220 14A 100V New
Original Mosfet IRF9530N TO220 14A 100V New
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
 
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovables
 
Datasheet
DatasheetDatasheet
Datasheet
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
 
Original N-Channel Mosfet IRFZ24N IRFZ24 TO-220 New Infineon Technologies
Original N-Channel Mosfet IRFZ24N IRFZ24 TO-220 New Infineon TechnologiesOriginal N-Channel Mosfet IRFZ24N IRFZ24 TO-220 New Infineon Technologies
Original N-Channel Mosfet IRFZ24N IRFZ24 TO-220 New Infineon Technologies
 
Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...
Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...
Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...
 
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IROrriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
 
Variable frequencyresponseanalysis8ed
Variable frequencyresponseanalysis8edVariable frequencyresponseanalysis8ed
Variable frequencyresponseanalysis8ed
 
DSP.ppt
DSP.pptDSP.ppt
DSP.ppt
 
Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...
Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...
Original Power N-Channel MOSFET FR13N15D FR13N15 13N15 150V 14A TO-252 New In...
 

More from Simen Li

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)Simen Li
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作Simen Li
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack FirmwareSimen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)Simen Li
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言Simen Li
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階Simen Li
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined RadiosSimen Li
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. SystemsSimen Li
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Simen Li
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorSimen Li
 

More from Simen Li (12)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 

Recently uploaded

『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书rnrncn29
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...Erbil Polytechnic University
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
OOP concepts -in-Python programming language
OOP concepts -in-Python programming languageOOP concepts -in-Python programming language
OOP concepts -in-Python programming languageSmritiSharma901052
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESkarthi keyan
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewsandhya757531
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Romil Mishra
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfisabel213075
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosVictor Morales
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsResearcher Researcher
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxsiddharthjain2303
 
signals in triangulation .. ...Surveying
signals in triangulation .. ...Surveyingsignals in triangulation .. ...Surveying
signals in triangulation .. ...Surveyingsapna80328
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.elesangwon
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfChristianCDAM
 

Recently uploaded (20)

『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
『澳洲文凭』买麦考瑞大学毕业证书成绩单办理澳洲Macquarie文凭学位证书
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
Designing pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptxDesigning pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptx
 
OOP concepts -in-Python programming language
OOP concepts -in-Python programming languageOOP concepts -in-Python programming language
OOP concepts -in-Python programming language
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overview
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdf
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitos
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending Actuators
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptx
 
signals in triangulation .. ...Surveying
signals in triangulation .. ...Surveyingsignals in triangulation .. ...Surveying
signals in triangulation .. ...Surveying
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdf
 

Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬

  • 2. 1 (Advanced Design System, ADS) I ADS II DCS 1900 III IV ADS
  • 3. 2 4.1 4.2 1. ( ) 4.1 (Barkhausen’s Criteria) ( ) ( )G s H s 1( ( ) ( ) 1G s H s = − ) 4.1 ( )G s ( ( )G s ) ( ( )H s ) ( ) ( ) ( )G s H s + + )(sG )(sH oViV fV fod VVV += sf f )(sH )()(1 )( )( sHsG sG V V sG i o f ⋅− == 1)()( =⋅ sHsG (Phase is 0 deg. or multiple of 360 deg.) Barkhausen’s Criteria: Resonator Amplifier 4.1
  • 4. 3 4.2 ( ) ( ) ( ) 11 1S′ > ( ) GΓ 11S′ 11G S′Γ ⋅ 1( ( ) ( )G s H s 1) 22 1S′ > ( ) 22 1L S′Γ ⋅ = 11 1G S′Γ ⋅ = 22 1L S′Γ ⋅ = ADS term GΓ 11S′ 4.3 11 1G S′Γ ⋅ = ( ADS ) Resonator Output Network0Z 0Z 1a 2a 1b 2b ][S inZ outZ )( 1Γ )( 2Γ LZ )( LΓ GZ )( GΓ ' 11S ' 22S 1' 11 =⋅Γ SG 1' 22 =⋅Γ SL If it is oscillating at one port, it must be simultaneously oscillating at the other port. Two-port Reflection: 4.2 Resonator GZ )( GΓ Output Network0 0Z 1a 2a 1b 2b ][S inZ outZ )( 1Γ )( 2Γ LZ )( LΓ ' 11S ' 22S Term Term1 Z=50 Ohm Num=1 Term Term2 Z=50 Ohm Num=2 4.3
  • 5. 4 4.4 ( ) ( ) ( )R ω ( )DR ω ( ) ( ) 0DX Xω ω+ = ( 0 ) LRResonator I )()()( ωωω jXRZ += 0)(and,)()()( >+−=− IRIjXIRIZ DDDD )(tv)(tvD One-port Negative Resistance: 0)()( =− ωω DRR 0)()( =+ ωω DXX ( ) ( ) ( )Z j R jXω ω ω= + ( ) ( ) ( )D D DZ j R jXω ω ω− = − + ( ) 0DR ω > 4.4 2. 4.5 Colpitts Hartley (Topology) Hartley Clapp Siler Copitts LC LC LC ( ) ( )1 2f LCπ= ( ) 4.5 ( )
  • 6. 5 bi ci C E B 1C 2C 3L bi ci C E B 1L 2L 3C bi ci C E B 1C 2C 3L bi ci C E B 1C 2C 3L Colpitts Hartley Clapp Siler 4.5 4.3 1. oscillator ADS Copy a reference design “Osctest_VCO.dsn” from ADS examples: ..examplesTutorialLearnOSC_prjnetworks To your project: oscillator_prjnetworks 4.6 ADS
  • 7. 6 2. ( ) 4.7 Osctest_VCO.dsn OscTest OscTest ( S_Param ) Z OscTest Start Stop Points Z ( 1 0 ) OscTest VB Vout VE VE VEVres 1.8 GHz Voltage-Controlled Oscillator S-PARAMETER OSCTEST for Loop Gain L L2 R= L=2 nH L R1 R=422 L=100 nH V_DC SRC2 Vdc=-5 V V_DC SRC3 Vdc=12 V L R2 R=681-Rbias L=100 nH R R3 R=50 Ohm C C2 C=1000 pF I_Probe ICC C C1 C=10 pF ap_dio_MV1404_19930601 D1 L L1 R= L=1000 nH V_DC SRC1 Vdc=4.0 V OscTest OscTickler Z=1.1 Ohm Start=0.5 GHz Stop=4.0 GHz Points=201 VAR VAR1 Rbias=50 Eqn Var R R4 R=Rbias pb_hp_AT41411_19921101 Q2 Resonator Active Part (include load network) Varactor: Voltage-controlled capacitor OscTest OscTest is a controller base on S-parameter simulation to determine if the circuit oscillates. 4.7 1.8 GHz 4.8 osc_test.ds dataset S(1,1) OscTest (Polar plot) 1 4.8 (1+j0) S(1,1) 1 S11>1 S(1,1) (1+j0) Maker m1 1.172 0 1.41 GHz 1 GHz 2 GHz ( 1.41 GHz 200 MHz, 5 GHz )
  • 8. 7 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2-1.4 1.4 freq (500.0MHz to 4.000GHz) S(1,1) m1 m1 freq= S(1,1)=1.172 / 0.975 1.410GHz Setup the dataset named: osc_test, and data display named: osc_basics. Show S(1,1) on a Polar-plot When the x-axis value of 1.0 is circled by the trace(because S11 > 1), it means that the circuit oscillates. This is the purpose of the OscTest component. S11 > 1 4.8 S(1,1) ( ) 4.9 S(1,1) 1 885 MHz 25 0 1.445 GHz 1.1 1.8 GHz 1.8 GHz −6.6 1.08 1.0 1.5 2.0 2.5 3.0 3.50.5 4.0 -20 -10 0 10 20 30 -30 40 freq, GHz phase(S(1,1)) m4 m5 m4 f req= phase(S(1,1))=0.005 1.445GHz m5 f req= phase(S(1,1))=-6.604 1.795GHz 1.0 1.5 2.0 2.5 3.0 3.50.5 4.0 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0.5 1.3 freq, GHz mag(S(1,1)) m2 m3 m2 f req= mag(S(1,1))=1.013 885.0MHz m3 f req= mag(S(1,1))=1.009 3.982GHz Around 1.8 GHz (Marker m5), the phase is not 0o, but this is OK at this time. The harmonic-balance simulation will be performed later. S11 > 1 above 880 MHz The device is unstable and has a chance to oscillate. 4.9 S(1,1) 3. ( ) 4.10 Osctest_VCO.dsn OscTest HB OscPort OscPort HB V
  • 9. 8 (HB AC ) NumOctaves Freq[1] Freq[1] 4.10 Freq[1] 1 GHz OscPort NumOctaves 2 0.5 GHz (1 GHz Octave) 2 GHz (1 GHz Octave) Freq[1] 2 Octave OscPort Steps 0.5 GHz 2 GHz 10 Q Steps FundIndex = 1 HB Freq[1] 1 GHz 1 GHz Freq[1] OscPort OscPort OscPort index = 1 Freq[1] HB Order[1] 7 3 7 15 31 ( DC 4 8 16 32 2 ) 7 Order[1] StatusLevel 3 OscMode OscPortName OscPort VE VE VEVres VB HarmonicBalance HB1 OscPortName="Osc1" OscMode=yes StatusLevel=2 Order[1]=7 Freq[1]=1.0 GHz HARMONIC BALANCE OscPort Osc1 MaxLoopGainStep= FundIndex=1 Steps=10 NumOctaves=2 Z=1.1 Ohm V= V_DC SRC1 Vdc=4.0 V L L1 R= L=1000 nH ap_dio_MV1404_19930601 D1 C C1 C=10 pF L L2 R= L=2 nH L R1 R=422 L=100 nH V_DC SRC2 Vdc=-5 V pb_hp_AT41411_19921101 Q2 OscPort Enable the oscillation analysis with “Use Oscport” method. Oscport HB simulation attempts to find the correct oscillating frequency using loop gain and current (Barkhausen’s Criteria). 3 4.10 OscPort
  • 10. 9 Dataset osc_port.ds Data Display ( Freq[1]) 1.806 GHz 4.11 Vout ( dBm() ) plot_vs(dBm(Vout), freq) x (fundamental) ( 50 dBm() ) ts() 4.12 Eqn loop_current=real(ICC.i[0]) Eqn osc_freq=freq[1] loop_current -0.011 osc_freq 1.806E9 m6 harmindex= dBm(Vout)=7.318 1 1 2 3 4 5 60 7 -30 -20 -10 0 -40 10 harmindex dBm(Vout) m6 m6 harmindex= dBm(Vout)=7.318 1 harmindex 0 1 2 3 4 5 6 7 freq 0.0000 Hz 1.806 GHz 3.611 GHz 5.417 GHz 7.222 GHz 9.028 GHz 10.83 GHz 12.64 GHz harm_power <invalid> 7.318 -2.208 -17.501 -17.061 -27.317 -27.815 -35.340 Eqn harm_power=dBm(Vout[0::1::7]) 2 4 6 8 10 120 14 -30 -20 -10 0 -40 10 freq, GHz dBm(Vout) Fundamental Frequency (oscillation frequency) Use dBm( ) to show the signal power (Note: x-axis is “harmonic index”) Use plot_vs( )to show the signal power versus frequency. (Note: x-axis is now “frequency”) 4.11 -600 -500 -400 -300 -700 -200 ts(Vres),mV -400 -200 0 200 -600 400 ts(VB),mV -600 -500 -400 -300 -700 -200 ts(VE),mV 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.10.0 1.2 -0.5 0.0 0.5 -1.0 1.0 time, nsec ts(Vout),V 4.12 ts( )
  • 11. 10 4. (Frequency Tuning Sensitivity) (Voltage-controlled oscillator, VCO) (Varactor) ( Tuning sensitivity KV ) MHz/V 1 V KV 1 KV KV KV ( ) HB1 HB HB2 1.8 GHz Freq[1] 1.8 GHz Vtune Vtune 0 V 10 V Step 0.25 V Dataset osc_tune Tune_Step Dataset Freq[1] Vtune Vres HarmonicBalance HB2 Step=Tune_Step Stop=Tune_Stop Start=Tune_Start SweepVar="Vtune" OscPortName="Yes" OscMode=yes StatusLevel=3 Order[1]=7 Freq[1]=1.8 GHz HARMONIC BALANCE VAR VAR2 Tune_Step=0.25 Tune_Stop=10 Tune_Start=0 Vtune=4 V Rbias=50 Eqn Var HarmonicBalance HB1 OscPortName="Osc1" OscMode=yes StatusLevel=3 Order[1]=7 Freq[1]=1.8 GHz HARMONIC BALANCE V_DC SRC1 Vdc=Vtune OscPort Osc1 MaxLoopGainStep= FundIndex=1 Steps=10 NumOctaves=2 Z=1.1 Ohm V= L L1 R= L=1000 nH ap_dio_MV1404_19930601 D1 C C1 C=10 pF Pass the variable “Tune_Step” to dataset Plot oscillating frequency v.s. Tuning voltage “Osc1” 4.13
  • 12. 11 Freq[1] Vtune 4.14 KV Freq[1] Vtune 4.14 Maker (diff() ) Vtune Vtune( ) KV KV ( ) Vtune 18 V 4.15 12 V ( ) Eqn osc_freq=freq[1] m7 indep(m7)= plot_vs(freq[1], Vtune)=1.806E9 4.000 m8 indep(m8)= plot_vs(freq[1], Vtune)=1.903E9 6.500 1 2 3 4 5 6 7 8 90 10 1.75 1.80 1.85 1.90 1.95 2.00 2.05 1.70 2.10 Vtune freq[1],GHz m7 m8 m7 indep(m7)= plot_vs(freq[1], Vtune)=1.806E9 4.000 m8 indep(m8)= plot_vs(freq[1], Vtune)=1.903E9 6.500 Eqn Tuning_Sensitivity=diff(freq[1])/Tune_Step[0] 1 2 3 4 5 6 7 8 90 10 6.0E7 8.0E7 1.0E8 1.2E8 1.4E8 1.6E8 4.0E7 1.8E8 Vtune Tuning_Sensitivity 1.75E9 1.80E9 1.85E9 1.90E9 1.95E9 2.00E91.70E9 2.05E9 6.0E7 8.0E7 1.0E8 1.2E8 1.4E8 1.6E8 4.0E7 1.8E8 osc_freq[0::1::(tune_pts-1)] Tuning_Sensitivity Eqn f_pts=sweep_size(osc_freq) f_pts 41 tune_pts 40 Eqn tune_pts=sweep_size(Tuning_Sensitivity) Eqn Tuning_Sensitivity_band=(m8-m7)/(indep(m8)-indep(m7)) Tuning_Sensitivity_band 3.904E7 m7 1.806E9 m8 1.903E9 Oscillating frequency v.s. Tuning voltage Calculate tuning sensitivity from makers m7 and m8 Calculate sensitivity by using diff() function. Note: Since no “padding” with diff(), there will be 1 point less than freq[1] points. Sensitivity v.s. Vtune Sensitivity v.s. Frequency 4.14 VAR VAR2 Tune_Step=0.25 Tune_Stop=18 Tune_Start=0 Vtune=4 V Rbias=50 Eqn Var 2 4 6 8 10 12 14 160 18 1.7 1.8 1.9 2.0 2.1 1.6 2.2 Vtune freq[1],GHz m7 m8 m7 indep(m7)= plot_vs(freq[1], Vtune)=1.806E9 4.000 m8 indep(m8)= plot_vs(freq[1], Vtune)=2.134E9 12.000Sweep Vtune up to 18 V The diode is breakdown above 12 V (acts like a resistor), it no longer acts like a variable capacitor. Diode = Varactor Maximum oscillating frequency is 2.13 GHz 4.15
  • 13. 12 5. (Source Pushing) (Frequency pushing figure) (voltage source) (Source pushing) 4.16 5 V 20 V 0.25 V Dataset osc_push Vres VAR VAR2 Tune_Step=0.25 V Tune_Stop=20 V Tune_Start=5 V Vtune=4 V Vbias=12 V Rbias=50 Eqn Var HarmonicBalance HB2 Step=Tune_Step Stop=Tune_Stop Start=Tune_Start SweepVar="Vbias" OscPortName="Yes" OscMode=yes StatusLevel=3 Order[1]=7 Freq[1]=1.8 GHz HARMONIC BALANCE HarmonicBalance HB1 OscPortName="Osc1" OscMode=yes StatusLevel=3 Order[1]=7 Freq[1]=1.8 GHz HARMONIC BALANCE V_DC SRC1 Vdc=Vtune L L1 R= L=1000 nH ap_dio_MV1404_19930601 D1 C C1 C=10 pF Vout V_DC SRC3 Vdc=Vbias L R2 R=681-Rbias L=100 nH R R3 R=50 Ohm C C2 C=1000 pF I_Probe ICC Change the supply voltage to a variable “Vbias”Sweep the supply voltage “Vbias” from 5 V to 20 V while Vtune is now held constantly at 4 V. (In practice, Vtune is set to a voltage that oscillator oscillates at “target” center frequency.) 4.16 4.17 source pushing 12 V source pushing source pushing figure 21.77 MHz/V m9 indep(m9)= plot_vs(freq[1], Vbias)=1.825E9 13.000 m10 indep(m10)= plot_vs(freq[1], Vbias)=1.781E9 11.000 6 8 10 12 14 16 184 20 0.5 1.0 1.5 0.0 2.0 Vbias freq[1],GHz m9m10 m9 indep(m9)= plot_vs(freq[1], Vbias)=1.825E9 13.000 m10 indep(m10)= plot_vs(freq[1], Vbias)=1.781E9 11.000 Eqn Source_pushing=(m9-m10)/(indep(m9)-indep(m10)) Source_pushing 2.177E7 Plot freq[1] v.s. Vbias to show the source pushing results. Here, use makers and equations to calculate the pushing figure around Vbias = 12 V. As we can see, this oscillator has the source pushing figure equals to 21.77 MHz/V. 4.17
  • 14. 13 6. (Load Pulling) (Frequency pulling figure) (load) (Load pulling) 50 ( ) 50 Osctest_VCO.dsn Osctest_VCO_pull.dsn HB HB1 HB2 HB HB3 50 S1P_Eqn S1P_Eqn VSWR ( ) Load pulling VSWR 25 MHz@VSWR=1.2 VSWR 1.2 25 MHz 4.18 VSWR VSWR (0 2π VSWR ) VSWRval phi VSWRval ParamSweep HB3 HB3 Dataset Vout VAR VAR1 VSWRval=1 phi=0 nvw=11 vw2=2 vw1=1 Eqn Var HarmonicBalance HB3 Step=0.1 Stop=2 Start=0 SweepVar="phi" OscPortName="Yes" OscMode=y es StatusLev el=3 Order[1]=7 Freq[1]=1.8 GHz HARMONIC BALANCE VAR VAR7 rho=(VSWRv al-1)/(VSWRv al+1) iload=rho*sin(pi*phi) load=rho*exp(j*pi*phi) rload=rho*cos(pi*phi) Eqn Var ParamSweep Sweep1 Lin=nvw Stop=vw2 Start=vw1 SweepVar="VSWRval" PARAMETER SWEEP S1P_Eqn Buf f erLoad S[1,1]=load C C2 C=1000 pF vw1: VSWR sweep start vw2: VSWR sweep stop nvw: num. of VSWR sweep real part of load sweep load Image part of load Sweep load for different constant VSWR circles in Smith chart. Save these variables in dataset 4.18
  • 15. 14 VSWR 4.19 ( ) Rectangular plot Trace Expression marker ( m12) m12 VSWR 4.20 VSWR VSWR ( phi 0 2π) Rectangular plot VSWR ( VSWR=1.2) phi ( ) ( 1.806 GHz) df_peak VSWR = 1.2 m12 indep(m12)= vs([0::sweep_size(VSWRval)-1],VSWRval)=2.000 1.200 Eqn refl=rload+j*iload Eqn vswr_k=(nvw[0,0]-1)*(indep(m12)-vw1[0,0])/(vw2[0,0]-vw1[0,0]) Eqn VSWR=vswr_k*(vw2[0,0]-vw1[0,0])/(nvw[0,0]-1)+(vw1[0,0]) Eqn LoadRefl=mag(refl[::,1]) Eqn df_peak=max(abs(freq[vswr_k,::,1]-1.806e9)) df_peak 3.202E7 Load Pulling Figure @ VSRW=1.200 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.91.0 2.0 VSWR m12 m12 indep(m12)= vs([0::sweep_size(VSWRval)-1],VSWRval)=2.000 1.200 Write down these equations for load pulling figure measurement @certain VSWR value. (You can change VSWR by scrolling marker m12) Find peak frequency that deviates from center frequency 1.086 GHz. 4.19 phi (0.000 to 2.000) refl[vswr_k,::] m12 indep(m12)= vs([0::sweep_size(VSWRval)-1],VSWRval)=2.000 1.200 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.91.0 2.0 VSWR m12 m12 indep(m12)= vs([0::sweep_size(VSWRval)-1],VSWRval)=2.000 1.200 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80.0 2.0 0.65 0.70 0.75 0.80 0.85 0.60 0.90 phi ( *pi radians) mag(Vout[vswr_k,::,1]) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80.0 2.0 1.7800G 1.7900G 1.8000G 1.8100G 1.8200G 1.8300G 1.7700G 1.8400G phi ( *pi radians) freq[vswr_k,::,1],Hz Eqn refl=rload+j*iload Eqn vswr_k=(nvw[0,0]-1)*(indep(m12)-vw1[0,0])/(vw2[0,0]-vw1[0,0]) Eqn VSWR=vswr_k*(vw2[0,0]-vw1[0,0])/(nvw[0,0]-1)+(vw1[0,0]) Eqn LoadRefl=mag(refl[::,1]) Frequency variation for VSWR = 1.20 Eqn df_peak=max(abs(freq[vswr_k,::,1]-1.806e9)) df_peak 3.202E7 Load Pulling Figure @ VSRW=1.200 Constant VSWR circleVout amplitude variations Frequency variations use @VSWR in the text to show the number 4.20
  • 16. 15 7. ADS Osctest_VCO.dsn HB 4.21 Order 15( 7 ) ADS Oversample[1] 4 PhaseNoise yes HB Noise Nonlinear noise Noise(1) Noise(2) ADS pnmx ( ) dBc dBc/Hz( ADS Hz y /Hz ) 10 kHz −78.39 dBc/Hz( −78.39 dBc/Hz@10 kHz) −98.34 dBc/Hz@100 kHz −118.08 dBc/Hz@1 MHz HarmonicBalance HB1 OscPortName="Osc1" OscMode=yes SortNoise=Sort by value NoiseNode[1]="Vout" PhaseNoise=yes NLNoiseDec=5 NLNoiseStop=10.0 MHz NLNoiseStart=1.0 Hz Oversample[1]=4 StatusLevel=3 Order[1]=15 Freq[1]=1.8 GHz HARMONIC BALANCE Phase Noise Simulation Setup 4.21 m11 noisefreq= pnmx=-78.390 10.00kHz m13 noisefreq= pnmx=-98.340 100.0kHz m14 noisefreq= pnmx=-118.079 1.000MHz 1E1 1E2 1E3 1E4 1E5 1E61 1E7 -120 -100 -80 -60 -40 -20 0 -140 20 noisefreq, Hz pnmx,dBc m11 m13 m14 m11 noisefreq= pnmx=-78.390 10.00kHz m13 noisefreq= pnmx=-98.340 100.0kHz m14 noisefreq= pnmx=-118.079 1.000MHz 4.22 (pnmx)