SlideShare a Scribd company logo
1 of 32
Reporting a Factorial ANOVA
Reporting the Study using APA
Reporting the Study using APA 
• You can report that you conducted a Factorial 
ANOVA by using the template below.
Reporting the Study using APA 
• You can report that you conducted a Factorial 
ANOVA by using the template below. 
• “A Factorial ANOVA was conducted to compare the 
main effects of [name the main effects (IVs)] and 
the interaction effect between (name the 
interaction effect) on (dependent variable).”
Reporting the Study using APA 
• You can report that you conducted a Factorial 
ANOVA by using the template below. 
• “A Factorial ANOVA was conducted to compare the 
main effects of [name the main effects (IVs)] and 
the interaction effect between (name the 
interaction effect) on (dependent variable).” 
• Here is an example:
Reporting the Study using APA 
• You can report that you conducted a Factorial 
ANOVA by using the template below. 
• “A Factorial ANOVA was conducted to compare the 
main effects of [name the main effects (IVs)] and 
the interaction effect between (name the 
interaction effect) on (dependent variable).” 
• Here is an example: 
• “A Factorial ANOVA was conducted to compare 
the main effects of type of athlete and age and the 
interaction effect between type of athlete and age 
on the number of slices of Pizza eaten in one 
sitting.”
Reporting Results using APA
Reporting Results using APA 
• You can report data from your own experiments by 
using the example below.
Reporting Results using APA 
• You can report data from your own experiments by 
using the example below. 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001.
Reporting Results using APA 
• You can report data from your own experiments by 
using the example below. 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001.
Reporting Results using APA 
• You can report data from your own experiments by 
using the example below. 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001.
Reporting Results using APA 
• You can report data from your own experiments by 
using the example below. 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001.
Reporting Results using APA 
• You can report data from your own experiments by 
using the example below. 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34). The interaction effect was significant, F(2, 63) = 
13.36, p < .001.
Reporting Results using APA 
• You can report data from your own experiments by 
using the example below. 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34). The interaction effect was significant, F(2, 63) = 
13.36, p < .001.
Reporting Results using APA 
• You can report data from your own experiments by 
using the example below. 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. 
• Note: A posthoc would provide information about 
which levels within each independent variable 
were significant.
Reporting Results using APA 
• Just fill in the blanks by using the SPSS output
Reporting Results using APA 
• Just fill in the blanks by using the SPSS output 
• Let’s break down these results using the output:
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001.
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. 
Tests of Between-Subjects Effects 
Dependent Variable: Pizza_Slices 
Source 
Type III Sum of 
Squares df Mean Square F Sig. 
Corrected Model 610.510a 5 122.102 61.986 .000 
Intercept 2224.308 1 2224.308 1129.195 .000 
Athletes 536.550 2 268.275 136.193 .000 
Age 5.758 1 5.758 2.923 .092 
Athletes * Age 52.666 2 26.333 13.368 .000 
Error 124.098 63 1.970 
Total 2973.000 69 
Corrected Total 734.609 68
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. 
Tests of Between-Subjects Effects 
Dependent Variable: Pizza_Slices 
Source 
Type III Sum of 
Squares df Mean Square F Sig. 
Corrected Model 610.510a 5 122.102 61.986 .000 
Intercept 2224.308 1 2224.308 1129.195 .000 
Athletes 536.550 2 268.275 136.193 .000 
Age 5.758 1 5.758 2.923 .092 
Athletes * Age 52.666 2 26.333 13.368 .000 
Error 124.098 63 1.970 
Total 2973.000 69 
Corrected Total 734.609 68
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. 
Tests of Between-Subjects Effects 
Dependent Variable: Pizza_Slices 
Source 
Type III Sum of 
Squares df Mean Square F Sig. 
Corrected Model 610.510a 5 122.102 61.986 .000 
Intercept 2224.308 1 2224.308 1129.195 .000 
Athletes 536.550 2 268.275 136.193 .000 
Age 5.758 1 5.758 2.923 .092 
Athletes * Age 52.666 2 26.333 13.368 .000 
Error 124.098 63 1.970 
Total 2973.000 69 
Corrected Total 734.609 68
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. 
Tests of Between-Subjects Effects 
Dependent Variable: Pizza_Slices 
Source 
Type III Sum of 
Squares df Mean Square F Sig. 
Corrected Model 610.510a 5 122.102 61.986 .000 
Intercept 2224.308 1 2224.308 1129.195 .000 
Athletes 536.550 2 268.275 136.193 .000 
Age 5.758 1 5.758 2.923 .092 
Athletes * Age 52.666 2 26.333 13.368 .000 
Error 124.098 63 1.970 
Total 2973.000 69 
Corrected Total 734.609 68
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. 
Tests of Between-Subjects Effects 
Dependent Variable: Pizza_Slices 
Source 
Type III Sum of 
Squares df Mean Square F Sig. 
Corrected Model 610.510a 5 122.102 61.986 .000 
Intercept 2224.308 1 2224.308 1129.195 .000 
Athletes 536.550 2 268.275 136.193 .000 
Age 5.758 1 5.758 2.923 .092 
Athletes * Age 52.666 2 26.333 13.368 .000 
Error 124.098 63 1.970 
Total 2973.000 69 
Corrected Total 734.609 68
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 
1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 
1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, 
indicating that the effect for age was not significant, younger (M = 5.97, SD = 
3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, 
F(2, 63) = 13.36, p < .001. Descriptive Statistics 
Dependent Variable: Pizza_Slices 
Athletes Age Mean Std. Deviation N 
Football Older 8.0000 .77460 11 
Younger 10.6667 1.92275 12 
Total 9.3913 1.99406 23 
Basketball Older 4.8182 1.16775 11 
Younger 5.5000 1.56670 12 
Total 5.1739 1.40299 23 
Soccer Older 3.3636 1.80404 11 
Younger 1.7500 .62158 12 
Total 2.5217 1.53355 23 
Total Older 5.3939 2.34440 33 
Younger 5.9722 3.97482 36 
Total 5.6957 3.28680 69
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. Descriptive Statistics 
Dependent Variable: Pizza_Slices 
Athletes Age Mean Std. Deviation N 
Football Older 8.0000 .77460 11 
Younger 10.6667 1.92275 12 
Total 9.3913 1.99406 23 
Basketball Older 4.8182 1.16775 11 
Younger 5.5000 1.56670 12 
Total 5.1739 1.40299 23 
Soccer Older 3.3636 1.80404 11 
Younger 1.7500 .62158 12 
Total 2.5217 1.53355 23 
Total Older 5.3939 2.34440 33 
Younger 5.9722 3.97482 36 
Total 5.6957 3.28680 69
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. Descriptive Statistics 
Dependent Variable: Pizza_Slices 
Athletes Age Mean Std. Deviation N 
Football Older 8.0000 .77460 11 
Younger 10.6667 1.92275 12 
Total 9.3913 1.99406 23 
Basketball Older 4.8182 1.16775 11 
Younger 5.5000 1.56670 12 
Total 5.1739 1.40299 23 
Soccer Older 3.3636 1.80404 11 
Younger 1.7500 .62158 12 
Total 2.5217 1.53355 23 
Total Older 5.3939 2.34440 33 
Younger 5.9722 3.97482 36 
Total 5.6957 3.28680 69
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. 
Tests of Between-Subjects Effects 
Dependent Variable: Pizza_Slices 
Source 
Type III Sum of 
Squares df Mean Square F Sig. 
Corrected Model 610.510a 5 122.102 61.986 .000 
Intercept 2224.308 1 2224.308 1129.195 .000 
Athletes 536.550 2 268.275 136.193 .000 
Age 5.758 1 5.758 2.923 .092 
Athletes * Age 52.666 2 26.333 13.368 .000 
Error 124.098 63 1.970 
Total 2973.000 69 
Corrected Total 734.609 68
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. 
Tests of Between-Subjects Effects 
Dependent Variable: Pizza_Slices 
Source 
Type III Sum of 
Squares df Mean Square F Sig. 
Corrected Model 610.510a 5 122.102 61.986 .000 
Intercept 2224.308 1 2224.308 1129.195 .000 
Athletes 536.550 2 268.275 136.193 .000 
Age 5.758 1 5.758 2.923 .092 
Athletes * Age 52.666 2 26.333 13.368 .000 
Error 124.098 63 1.970 
Total 2973.000 69 
Corrected Total 734.609 68
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. Descriptive Statistics 
Dependent Variable: Pizza_Slices 
Athletes Age Mean Std. Deviation N 
Football Older 8.0000 .77460 11 
Younger 10.6667 1.92275 12 
Total 9.3913 1.99406 23 
Basketball Older 4.8182 1.16775 11 
Younger 5.5000 1.56670 12 
Total 5.1739 1.40299 23 
Soccer Older 3.3636 1.80404 11 
Younger 1.7500 .62158 12 
Total 2.5217 1.53355 23 
Total Older 5.3939 2.34440 33 
Younger 5.9722 3.97482 36 
Total 5.6957 3.28680 69
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. Descriptive Statistics 
Dependent Variable: Pizza_Slices 
Athletes Age Mean Std. Deviation N 
Football Older 8.0000 .77460 11 
Younger 10.6667 1.92275 12 
Total 9.3913 1.99406 23 
Basketball Older 4.8182 1.16775 11 
Younger 5.5000 1.56670 12 
Total 5.1739 1.40299 23 
Soccer Older 3.3636 1.80404 11 
Younger 1.7500 .62158 12 
Total 2.5217 1.53355 23 
Total Older 5.3939 2.34440 33 
Younger 5.9722 3.97482 36 
Total 5.6957 3.28680 69
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. 
Tests of Between-Subjects Effects 
Dependent Variable: Pizza_Slices 
Source 
Type III Sum of 
Squares df Mean Square F Sig. 
Corrected Model 610.510a 5 122.102 61.986 .000 
Intercept 2224.308 1 2224.308 1129.195 .000 
Athletes 536.550 2 268.275 136.193 .000 
Age 5.758 1 5.758 2.923 .092 
Athletes * Age 52.666 2 26.333 13.368 .000 
Error 124.098 63 1.970 
Total 2973.000 69 
Corrected Total 734.609 68
Reporting Results using APA 
• A two-way analysis of variance was conducted on the influence of two 
independent variables (athlete type, age) on the number of slices of pizza eaten 
in one sitting. Athlete type included three levels (football, basketball, soccer 
players) and age consisted of two levels (younger, older). All effects were 
statistically significant at the .05 significance level except for the Age factor. The 
main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, 
indicating a significant difference between football players (M = 9.39, SD = 1.99), 
basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. 
The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating 
that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and 
older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 
13.36, p < .001. 
Tests of Between-Subjects Effects 
Dependent Variable: Pizza_Slices 
Source 
Type III Sum of 
Squares df Mean Square F Sig. 
Corrected Model 610.510a 5 122.102 61.986 .000 
Intercept 2224.308 1 2224.308 1129.195 .000 
Athletes 536.550 2 268.275 136.193 .000 
Age 5.758 1 5.758 2.923 .092 
Athletes * Age 52.666 2 26.333 13.368 .000 
Error 124.098 63 1.970 
Total 2973.000 69 
Corrected Total 734.609 68

More Related Content

What's hot

Reporting an independent sample t test
Reporting an independent sample t testReporting an independent sample t test
Reporting an independent sample t testKen Plummer
 
Reporting a Kruskal Wallis Test
Reporting a Kruskal Wallis TestReporting a Kruskal Wallis Test
Reporting a Kruskal Wallis TestKen Plummer
 
Reporting a single linear regression in apa
Reporting a single linear regression in apaReporting a single linear regression in apa
Reporting a single linear regression in apaKen Plummer
 
Null hypothesis for an ANCOVA
Null hypothesis for an ANCOVANull hypothesis for an ANCOVA
Null hypothesis for an ANCOVAKen Plummer
 
Reporting a paired sample t test
Reporting a paired sample t testReporting a paired sample t test
Reporting a paired sample t testKen Plummer
 
Reporting a one way ANOVA
Reporting a one way ANOVAReporting a one way ANOVA
Reporting a one way ANOVAAmit Sharma
 
What is an ANCOVA?
What is an ANCOVA?What is an ANCOVA?
What is an ANCOVA?Ken Plummer
 
What is a Factorial ANOVA?
What is a Factorial ANOVA?What is a Factorial ANOVA?
What is a Factorial ANOVA?Ken Plummer
 
Null hypothesis for a Factorial ANOVA
Null hypothesis for a Factorial ANOVANull hypothesis for a Factorial ANOVA
Null hypothesis for a Factorial ANOVAKen Plummer
 
Reporting a non parametric Friedman test in APA
Reporting a non parametric Friedman test in APAReporting a non parametric Friedman test in APA
Reporting a non parametric Friedman test in APAKen Plummer
 
Reporting a partial correlation in apa
Reporting a partial correlation in apaReporting a partial correlation in apa
Reporting a partial correlation in apaKen Plummer
 
Reporting a multiple linear regression in APA
Reporting a multiple linear regression in APAReporting a multiple linear regression in APA
Reporting a multiple linear regression in APAAmit Sharma
 
Reporting Pearson Correlation Test of Independence in APA
Reporting Pearson Correlation Test of Independence in APAReporting Pearson Correlation Test of Independence in APA
Reporting Pearson Correlation Test of Independence in APAKen Plummer
 
Reporting a paired sample t -test
Reporting a paired sample t -testReporting a paired sample t -test
Reporting a paired sample t -testAmit Sharma
 
Reporting a single sample t-test
Reporting a single sample t-testReporting a single sample t-test
Reporting a single sample t-testKen Plummer
 
What is an independent samples-t test?
What is an independent samples-t test?What is an independent samples-t test?
What is an independent samples-t test?Ken Plummer
 
Factorial ANOVA
Factorial ANOVAFactorial ANOVA
Factorial ANOVAKen Plummer
 
Reporting Chi Square Test of Independence in APA
Reporting Chi Square Test of Independence in APAReporting Chi Square Test of Independence in APA
Reporting Chi Square Test of Independence in APAKen Plummer
 

What's hot (20)

Reporting an independent sample t test
Reporting an independent sample t testReporting an independent sample t test
Reporting an independent sample t test
 
Reporting a Kruskal Wallis Test
Reporting a Kruskal Wallis TestReporting a Kruskal Wallis Test
Reporting a Kruskal Wallis Test
 
Reporting a single linear regression in apa
Reporting a single linear regression in apaReporting a single linear regression in apa
Reporting a single linear regression in apa
 
Null hypothesis for an ANCOVA
Null hypothesis for an ANCOVANull hypothesis for an ANCOVA
Null hypothesis for an ANCOVA
 
Reporting a paired sample t test
Reporting a paired sample t testReporting a paired sample t test
Reporting a paired sample t test
 
Reporting a one way ANOVA
Reporting a one way ANOVAReporting a one way ANOVA
Reporting a one way ANOVA
 
What is an ANCOVA?
What is an ANCOVA?What is an ANCOVA?
What is an ANCOVA?
 
What is a Factorial ANOVA?
What is a Factorial ANOVA?What is a Factorial ANOVA?
What is a Factorial ANOVA?
 
Null hypothesis for a Factorial ANOVA
Null hypothesis for a Factorial ANOVANull hypothesis for a Factorial ANOVA
Null hypothesis for a Factorial ANOVA
 
Reporting a non parametric Friedman test in APA
Reporting a non parametric Friedman test in APAReporting a non parametric Friedman test in APA
Reporting a non parametric Friedman test in APA
 
Reporting a partial correlation in apa
Reporting a partial correlation in apaReporting a partial correlation in apa
Reporting a partial correlation in apa
 
Reporting a multiple linear regression in APA
Reporting a multiple linear regression in APAReporting a multiple linear regression in APA
Reporting a multiple linear regression in APA
 
Reporting Pearson Correlation Test of Independence in APA
Reporting Pearson Correlation Test of Independence in APAReporting Pearson Correlation Test of Independence in APA
Reporting Pearson Correlation Test of Independence in APA
 
Reporting a paired sample t -test
Reporting a paired sample t -testReporting a paired sample t -test
Reporting a paired sample t -test
 
Reporting a single sample t-test
Reporting a single sample t-testReporting a single sample t-test
Reporting a single sample t-test
 
What is an independent samples-t test?
What is an independent samples-t test?What is an independent samples-t test?
What is an independent samples-t test?
 
ANOVA II
ANOVA IIANOVA II
ANOVA II
 
Factorial ANOVA
Factorial ANOVAFactorial ANOVA
Factorial ANOVA
 
Correlational research
Correlational researchCorrelational research
Correlational research
 
Reporting Chi Square Test of Independence in APA
Reporting Chi Square Test of Independence in APAReporting Chi Square Test of Independence in APA
Reporting Chi Square Test of Independence in APA
 

More from Ken Plummer

Diff rel gof-fit - jejit - practice (5)
Diff rel gof-fit - jejit - practice (5)Diff rel gof-fit - jejit - practice (5)
Diff rel gof-fit - jejit - practice (5)Ken Plummer
 
Learn About Range - Copyright updated
Learn About Range - Copyright updatedLearn About Range - Copyright updated
Learn About Range - Copyright updatedKen Plummer
 
Inferential vs descriptive tutorial of when to use - Copyright Updated
Inferential vs descriptive tutorial of when to use - Copyright UpdatedInferential vs descriptive tutorial of when to use - Copyright Updated
Inferential vs descriptive tutorial of when to use - Copyright UpdatedKen Plummer
 
Diff rel ind-fit practice - Copyright Updated
Diff rel ind-fit practice - Copyright UpdatedDiff rel ind-fit practice - Copyright Updated
Diff rel ind-fit practice - Copyright UpdatedKen Plummer
 
Normal or skewed distributions (inferential) - Copyright updated
Normal or skewed distributions (inferential) - Copyright updatedNormal or skewed distributions (inferential) - Copyright updated
Normal or skewed distributions (inferential) - Copyright updatedKen Plummer
 
Normal or skewed distributions (descriptive both2) - Copyright updated
Normal or skewed distributions (descriptive both2) - Copyright updatedNormal or skewed distributions (descriptive both2) - Copyright updated
Normal or skewed distributions (descriptive both2) - Copyright updatedKen Plummer
 
Nature of the data practice - Copyright updated
Nature of the data practice - Copyright updatedNature of the data practice - Copyright updated
Nature of the data practice - Copyright updatedKen Plummer
 
Nature of the data (spread) - Copyright updated
Nature of the data (spread) - Copyright updatedNature of the data (spread) - Copyright updated
Nature of the data (spread) - Copyright updatedKen Plummer
 
Mode practice 1 - Copyright updated
Mode practice 1 - Copyright updatedMode practice 1 - Copyright updated
Mode practice 1 - Copyright updatedKen Plummer
 
Nature of the data (descriptive) - Copyright updated
Nature of the data (descriptive) - Copyright updatedNature of the data (descriptive) - Copyright updated
Nature of the data (descriptive) - Copyright updatedKen Plummer
 
Dichotomous or scaled
Dichotomous or scaledDichotomous or scaled
Dichotomous or scaledKen Plummer
 
Skewed less than 30 (ties)
Skewed less than 30 (ties)Skewed less than 30 (ties)
Skewed less than 30 (ties)Ken Plummer
 
Skewed sample size less than 30
Skewed sample size less than 30Skewed sample size less than 30
Skewed sample size less than 30Ken Plummer
 
Ordinal (ties)
Ordinal (ties)Ordinal (ties)
Ordinal (ties)Ken Plummer
 
Ordinal and nominal
Ordinal and nominalOrdinal and nominal
Ordinal and nominalKen Plummer
 
Relationship covariates
Relationship   covariatesRelationship   covariates
Relationship covariatesKen Plummer
 
Relationship nature of data
Relationship nature of dataRelationship nature of data
Relationship nature of dataKen Plummer
 
Number of variables (predictive)
Number of variables (predictive)Number of variables (predictive)
Number of variables (predictive)Ken Plummer
 
Levels of the iv
Levels of the ivLevels of the iv
Levels of the ivKen Plummer
 
Independent variables (2)
Independent variables (2)Independent variables (2)
Independent variables (2)Ken Plummer
 

More from Ken Plummer (20)

Diff rel gof-fit - jejit - practice (5)
Diff rel gof-fit - jejit - practice (5)Diff rel gof-fit - jejit - practice (5)
Diff rel gof-fit - jejit - practice (5)
 
Learn About Range - Copyright updated
Learn About Range - Copyright updatedLearn About Range - Copyright updated
Learn About Range - Copyright updated
 
Inferential vs descriptive tutorial of when to use - Copyright Updated
Inferential vs descriptive tutorial of when to use - Copyright UpdatedInferential vs descriptive tutorial of when to use - Copyright Updated
Inferential vs descriptive tutorial of when to use - Copyright Updated
 
Diff rel ind-fit practice - Copyright Updated
Diff rel ind-fit practice - Copyright UpdatedDiff rel ind-fit practice - Copyright Updated
Diff rel ind-fit practice - Copyright Updated
 
Normal or skewed distributions (inferential) - Copyright updated
Normal or skewed distributions (inferential) - Copyright updatedNormal or skewed distributions (inferential) - Copyright updated
Normal or skewed distributions (inferential) - Copyright updated
 
Normal or skewed distributions (descriptive both2) - Copyright updated
Normal or skewed distributions (descriptive both2) - Copyright updatedNormal or skewed distributions (descriptive both2) - Copyright updated
Normal or skewed distributions (descriptive both2) - Copyright updated
 
Nature of the data practice - Copyright updated
Nature of the data practice - Copyright updatedNature of the data practice - Copyright updated
Nature of the data practice - Copyright updated
 
Nature of the data (spread) - Copyright updated
Nature of the data (spread) - Copyright updatedNature of the data (spread) - Copyright updated
Nature of the data (spread) - Copyright updated
 
Mode practice 1 - Copyright updated
Mode practice 1 - Copyright updatedMode practice 1 - Copyright updated
Mode practice 1 - Copyright updated
 
Nature of the data (descriptive) - Copyright updated
Nature of the data (descriptive) - Copyright updatedNature of the data (descriptive) - Copyright updated
Nature of the data (descriptive) - Copyright updated
 
Dichotomous or scaled
Dichotomous or scaledDichotomous or scaled
Dichotomous or scaled
 
Skewed less than 30 (ties)
Skewed less than 30 (ties)Skewed less than 30 (ties)
Skewed less than 30 (ties)
 
Skewed sample size less than 30
Skewed sample size less than 30Skewed sample size less than 30
Skewed sample size less than 30
 
Ordinal (ties)
Ordinal (ties)Ordinal (ties)
Ordinal (ties)
 
Ordinal and nominal
Ordinal and nominalOrdinal and nominal
Ordinal and nominal
 
Relationship covariates
Relationship   covariatesRelationship   covariates
Relationship covariates
 
Relationship nature of data
Relationship nature of dataRelationship nature of data
Relationship nature of data
 
Number of variables (predictive)
Number of variables (predictive)Number of variables (predictive)
Number of variables (predictive)
 
Levels of the iv
Levels of the ivLevels of the iv
Levels of the iv
 
Independent variables (2)
Independent variables (2)Independent variables (2)
Independent variables (2)
 

Recently uploaded

ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxPoojaSen20
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinojohnmickonozaleda
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 

Recently uploaded (20)

ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipino
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 

Reporting a Factorial ANOVA

  • 3. Reporting the Study using APA • You can report that you conducted a Factorial ANOVA by using the template below.
  • 4. Reporting the Study using APA • You can report that you conducted a Factorial ANOVA by using the template below. • “A Factorial ANOVA was conducted to compare the main effects of [name the main effects (IVs)] and the interaction effect between (name the interaction effect) on (dependent variable).”
  • 5. Reporting the Study using APA • You can report that you conducted a Factorial ANOVA by using the template below. • “A Factorial ANOVA was conducted to compare the main effects of [name the main effects (IVs)] and the interaction effect between (name the interaction effect) on (dependent variable).” • Here is an example:
  • 6. Reporting the Study using APA • You can report that you conducted a Factorial ANOVA by using the template below. • “A Factorial ANOVA was conducted to compare the main effects of [name the main effects (IVs)] and the interaction effect between (name the interaction effect) on (dependent variable).” • Here is an example: • “A Factorial ANOVA was conducted to compare the main effects of type of athlete and age and the interaction effect between type of athlete and age on the number of slices of Pizza eaten in one sitting.”
  • 8. Reporting Results using APA • You can report data from your own experiments by using the example below.
  • 9. Reporting Results using APA • You can report data from your own experiments by using the example below. • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001.
  • 10. Reporting Results using APA • You can report data from your own experiments by using the example below. • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001.
  • 11. Reporting Results using APA • You can report data from your own experiments by using the example below. • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001.
  • 12. Reporting Results using APA • You can report data from your own experiments by using the example below. • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001.
  • 13. Reporting Results using APA • You can report data from your own experiments by using the example below. • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34). The interaction effect was significant, F(2, 63) = 13.36, p < .001.
  • 14. Reporting Results using APA • You can report data from your own experiments by using the example below. • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34). The interaction effect was significant, F(2, 63) = 13.36, p < .001.
  • 15. Reporting Results using APA • You can report data from your own experiments by using the example below. • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. • Note: A posthoc would provide information about which levels within each independent variable were significant.
  • 16. Reporting Results using APA • Just fill in the blanks by using the SPSS output
  • 17. Reporting Results using APA • Just fill in the blanks by using the SPSS output • Let’s break down these results using the output:
  • 18. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001.
  • 19. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Tests of Between-Subjects Effects Dependent Variable: Pizza_Slices Source Type III Sum of Squares df Mean Square F Sig. Corrected Model 610.510a 5 122.102 61.986 .000 Intercept 2224.308 1 2224.308 1129.195 .000 Athletes 536.550 2 268.275 136.193 .000 Age 5.758 1 5.758 2.923 .092 Athletes * Age 52.666 2 26.333 13.368 .000 Error 124.098 63 1.970 Total 2973.000 69 Corrected Total 734.609 68
  • 20. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Tests of Between-Subjects Effects Dependent Variable: Pizza_Slices Source Type III Sum of Squares df Mean Square F Sig. Corrected Model 610.510a 5 122.102 61.986 .000 Intercept 2224.308 1 2224.308 1129.195 .000 Athletes 536.550 2 268.275 136.193 .000 Age 5.758 1 5.758 2.923 .092 Athletes * Age 52.666 2 26.333 13.368 .000 Error 124.098 63 1.970 Total 2973.000 69 Corrected Total 734.609 68
  • 21. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Tests of Between-Subjects Effects Dependent Variable: Pizza_Slices Source Type III Sum of Squares df Mean Square F Sig. Corrected Model 610.510a 5 122.102 61.986 .000 Intercept 2224.308 1 2224.308 1129.195 .000 Athletes 536.550 2 268.275 136.193 .000 Age 5.758 1 5.758 2.923 .092 Athletes * Age 52.666 2 26.333 13.368 .000 Error 124.098 63 1.970 Total 2973.000 69 Corrected Total 734.609 68
  • 22. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Tests of Between-Subjects Effects Dependent Variable: Pizza_Slices Source Type III Sum of Squares df Mean Square F Sig. Corrected Model 610.510a 5 122.102 61.986 .000 Intercept 2224.308 1 2224.308 1129.195 .000 Athletes 536.550 2 268.275 136.193 .000 Age 5.758 1 5.758 2.923 .092 Athletes * Age 52.666 2 26.333 13.368 .000 Error 124.098 63 1.970 Total 2973.000 69 Corrected Total 734.609 68
  • 23. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Tests of Between-Subjects Effects Dependent Variable: Pizza_Slices Source Type III Sum of Squares df Mean Square F Sig. Corrected Model 610.510a 5 122.102 61.986 .000 Intercept 2224.308 1 2224.308 1129.195 .000 Athletes 536.550 2 268.275 136.193 .000 Age 5.758 1 5.758 2.923 .092 Athletes * Age 52.666 2 26.333 13.368 .000 Error 124.098 63 1.970 Total 2973.000 69 Corrected Total 734.609 68
  • 24. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Descriptive Statistics Dependent Variable: Pizza_Slices Athletes Age Mean Std. Deviation N Football Older 8.0000 .77460 11 Younger 10.6667 1.92275 12 Total 9.3913 1.99406 23 Basketball Older 4.8182 1.16775 11 Younger 5.5000 1.56670 12 Total 5.1739 1.40299 23 Soccer Older 3.3636 1.80404 11 Younger 1.7500 .62158 12 Total 2.5217 1.53355 23 Total Older 5.3939 2.34440 33 Younger 5.9722 3.97482 36 Total 5.6957 3.28680 69
  • 25. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Descriptive Statistics Dependent Variable: Pizza_Slices Athletes Age Mean Std. Deviation N Football Older 8.0000 .77460 11 Younger 10.6667 1.92275 12 Total 9.3913 1.99406 23 Basketball Older 4.8182 1.16775 11 Younger 5.5000 1.56670 12 Total 5.1739 1.40299 23 Soccer Older 3.3636 1.80404 11 Younger 1.7500 .62158 12 Total 2.5217 1.53355 23 Total Older 5.3939 2.34440 33 Younger 5.9722 3.97482 36 Total 5.6957 3.28680 69
  • 26. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Descriptive Statistics Dependent Variable: Pizza_Slices Athletes Age Mean Std. Deviation N Football Older 8.0000 .77460 11 Younger 10.6667 1.92275 12 Total 9.3913 1.99406 23 Basketball Older 4.8182 1.16775 11 Younger 5.5000 1.56670 12 Total 5.1739 1.40299 23 Soccer Older 3.3636 1.80404 11 Younger 1.7500 .62158 12 Total 2.5217 1.53355 23 Total Older 5.3939 2.34440 33 Younger 5.9722 3.97482 36 Total 5.6957 3.28680 69
  • 27. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Tests of Between-Subjects Effects Dependent Variable: Pizza_Slices Source Type III Sum of Squares df Mean Square F Sig. Corrected Model 610.510a 5 122.102 61.986 .000 Intercept 2224.308 1 2224.308 1129.195 .000 Athletes 536.550 2 268.275 136.193 .000 Age 5.758 1 5.758 2.923 .092 Athletes * Age 52.666 2 26.333 13.368 .000 Error 124.098 63 1.970 Total 2973.000 69 Corrected Total 734.609 68
  • 28. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Tests of Between-Subjects Effects Dependent Variable: Pizza_Slices Source Type III Sum of Squares df Mean Square F Sig. Corrected Model 610.510a 5 122.102 61.986 .000 Intercept 2224.308 1 2224.308 1129.195 .000 Athletes 536.550 2 268.275 136.193 .000 Age 5.758 1 5.758 2.923 .092 Athletes * Age 52.666 2 26.333 13.368 .000 Error 124.098 63 1.970 Total 2973.000 69 Corrected Total 734.609 68
  • 29. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Descriptive Statistics Dependent Variable: Pizza_Slices Athletes Age Mean Std. Deviation N Football Older 8.0000 .77460 11 Younger 10.6667 1.92275 12 Total 9.3913 1.99406 23 Basketball Older 4.8182 1.16775 11 Younger 5.5000 1.56670 12 Total 5.1739 1.40299 23 Soccer Older 3.3636 1.80404 11 Younger 1.7500 .62158 12 Total 2.5217 1.53355 23 Total Older 5.3939 2.34440 33 Younger 5.9722 3.97482 36 Total 5.6957 3.28680 69
  • 30. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Descriptive Statistics Dependent Variable: Pizza_Slices Athletes Age Mean Std. Deviation N Football Older 8.0000 .77460 11 Younger 10.6667 1.92275 12 Total 9.3913 1.99406 23 Basketball Older 4.8182 1.16775 11 Younger 5.5000 1.56670 12 Total 5.1739 1.40299 23 Soccer Older 3.3636 1.80404 11 Younger 1.7500 .62158 12 Total 2.5217 1.53355 23 Total Older 5.3939 2.34440 33 Younger 5.9722 3.97482 36 Total 5.6957 3.28680 69
  • 31. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Tests of Between-Subjects Effects Dependent Variable: Pizza_Slices Source Type III Sum of Squares df Mean Square F Sig. Corrected Model 610.510a 5 122.102 61.986 .000 Intercept 2224.308 1 2224.308 1129.195 .000 Athletes 536.550 2 268.275 136.193 .000 Age 5.758 1 5.758 2.923 .092 Athletes * Age 52.666 2 26.333 13.368 .000 Error 124.098 63 1.970 Total 2973.000 69 Corrected Total 734.609 68
  • 32. Reporting Results using APA • A two-way analysis of variance was conducted on the influence of two independent variables (athlete type, age) on the number of slices of pizza eaten in one sitting. Athlete type included three levels (football, basketball, soccer players) and age consisted of two levels (younger, older). All effects were statistically significant at the .05 significance level except for the Age factor. The main effect for athlete type yielded an F ratio of F(2, 63) = 136.2, p < .001, indicating a significant difference between football players (M = 9.39, SD = 1.99), basketball players (M = 5.17, SD = 1.40) and soccer players (M = 2.52, SD = 1.53. The main effect for age yielded an F ratio of F(1, 63) = 2.9, p > .05, indicating that the effect for age was not significant, younger (M = 5.97, SD = 3.97) and older (M = 5.39, SD = 2.34) The interaction effect was significant, F(2, 63) = 13.36, p < .001. Tests of Between-Subjects Effects Dependent Variable: Pizza_Slices Source Type III Sum of Squares df Mean Square F Sig. Corrected Model 610.510a 5 122.102 61.986 .000 Intercept 2224.308 1 2224.308 1129.195 .000 Athletes 536.550 2 268.275 136.193 .000 Age 5.758 1 5.758 2.923 .092 Athletes * Age 52.666 2 26.333 13.368 .000 Error 124.098 63 1.970 Total 2973.000 69 Corrected Total 734.609 68