SlideShare una empresa de Scribd logo
1 de 109
Descargar para leer sin conexión
LECTURE 3: VR TECHNOLOGY
COMP 4010 – Virtual Reality
Semester 5 - 2019
Bruce Thomas, Mark Billinghurst, Gun Lee
University of South Australia
August 13th 2019
• Presence
• Perception and VR
• Human Perception
• Sight, hearing, touch, smell, taste
• VR Technology
• Visual display
Recap – Lecture 2
Presence ..
“The subjective experience of being in one place or
environment even when physically situated in another”
Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence
questionnaire. Presence: Teleoperators and virtual environments, 7(3), 225-240.
How do We Perceive Reality?
• We understand the world through
our senses:
• Sight, Hearing, Touch, Taste, Smell
(and others..)
• Two basic processes:
• Sensation – Gathering information
• Perception – Interpreting information
Simple Sensing/Perception Model
Creating the Illusion of Reality
• Fooling human perception by using
technology to generate artificial sensations
• Computer generated sights, sounds, smell, etc
Reality vs. Virtual Reality
• In a VR system there are input and output devices
between human perception and action
Using Technology to Stimulate Senses
• Simulate output
• E.g. simulate real scene
• Map output to devices
• Graphics to HMD
• Use devices to
stimulate the senses
• HMD stimulates eyes
Visual
Simulation
3D Graphics HMD Vision
System
Brain
Example: Visual Simulation
Human-Machine Interface
Creating an Immersive Experience
•Head Mounted Display
•Immerse the eyes
•Projection/Large Screen
•Immerse the head/body
•Future Technologies
•Neural implants
•Contact lens displays, etc
HMD Basic Principles
• Use display with optics to create illusion of virtual screen
Key Properties of HMDs
• Lens
• Focal length, Field of View
• Occularity, Interpupillary distance
• Eye relief, Eye box
• Display
• Resolution, contrast
• Power, brightness
• Refresh rate
• Ergonomics
• Size, weight
• Wearability
VR Display Taxonomy
TRACKING
Tracking in VR
• Need for Tracking
• User turns their head and the VR graphics scene changes
• User wants to walking through a virtual scene
• User reaches out and grab a virtual object
• The user wants to use a real prop in VR
• All of these require technology to track the user or object
• Continuously provide information about position and orientation
Head Tracking
Hand Tracking
• Degree of Freedom = independent movement about an axis
• 3 DoF Orientation = roll, pitch, yaw (rotation about x, y, or z axis)
• 3 DoF Translation = movement along x,y,z axis
• Different requirements
• User turns their head in VR -> needs 3 DoF orientation tracker
• Moving in VR -> needs a 6 DoF tracker (r,p,y) and (x, y, z)
Degrees of Freedom
Tracking and Rendering in VR
Tracking fits into the graphics pipeline for VR
Tracking Technologies
§ Active (device sends out signal)
• Mechanical, Magnetic, Ultrasonic
• GPS, Wifi, cell location
§ Passive (device senses world)
• Inertial sensors (compass, accelerometer, gyro)
• Computer Vision
• Marker based, Natural feature tracking
§ Hybrid Tracking
• Combined sensors (eg Vision + Inertial)
Tracking Types
Magnetic
Tracker
Inertial
Tracker
Ultrasonic
Tracker
Optical
Tracker
Marker-Based
Tracking
Markerless
Tracking
Specialized
Tracking
Edge-Based
Tracking
Template-Based
Tracking
Interest Point
Tracking
Mechanical
Tracker
MechanicalTracker (Active)
•Idea: mechanical arms with joint sensors
•++: high accuracy, haptic feedback
•-- : cumbersome, expensive
Microscribe Sutherland
MagneticTracker (Active)
• Idea: difference between a magnetic
transmitter and a receiver
• ++: 6DOF, robust
• -- : wired, sensible to metal, noisy, expensive
• -- : error increases with distance
Flock of Birds (Ascension)
Example: Razer Hydra
• Developed by Sixense
• Magnetic source + 2 wired controllers
• Short range (1-2 m)
• Precision of 1mm and 1o
• $600 USD
Razor Hydra Demo
• https://www.youtube.com/watch?v=jnqFdSa5p7w
InertialTracker (Passive)
• Idea: measuring linear and angular orientation rates
(accelerometer/gyroscope)
• ++: no transmitter, cheap, small, high frequency, wireless
• -- : drift, hysteris only 3DOF
IS300 (Intersense)
Wii Remote
OpticalTracker (Passive)
• Idea: Image Processing and ComputerVision
• Specialized
• Infrared, Retro-Reflective, Stereoscopic
• Monocular BasedVisionTracking
ART Hi-Ball
Outside-In vs.Inside-OutTracking
Example: Vive Lighthouse Tracking
• Outside-in tracking system
• 2 base stations
• Each with 2 laser scanners, LED array
• Headworn/handheld sensors
• 37 photo-sensors in HMD, 17 in hand
• Additional IMU sensors (500 Hz)
• Performance
• Tracking server fuses sensor samples
• Sampling rate 250 Hz, 4 ms latency
• See http://doc-ok.org/?p=1478
Lighthouse Components
Base station
- IR LED array
- 2 x scanned lasers
Head Mounted Display
- 37 photo sensors
- 9 axis IMU
Lighthouse Setup
Lighthouse Tracking
Base station scanning
https://www.youtube.com/watch?v=avBt_P0wg_Y
https://www.youtube.com/watch?v=oqPaaMR4kY4
Room tracking
Example: Oculus Quest
• Inside out tracking
• Four cameras on corner of display
• Searching for visual features
• On setup creates map of room
Oculus Quest Tracking
• https://www.youtube.com/watch?v=2jY3B_F3GZk
Occipital Bridge Engine/Structure Core
• Inside out tracking
• Uses structured light
• Better than room scale tracking
• Integrated into bridge HMD
• https://structure.io/
https://www.youtube.com/watch?v=qbkwew3bfWU
Tracking Coordinate Frames
• There can be several coordinate frames to consider
• Head pose with respect to real world
• Coordinate fame of tracking system wrt HMD
• Position of hand in coordinate frame of hand tracker
Example: Finding your hand in VR
• Using Lighthouse and LeapMotion
• Multiple Coordinate Frames
• LeapMotion tracks hand in LeapMotion coordinate frame (HLM)
• LeapMotion is fixed in HMD coordinate frame (LMHMD)
• HMD is tracked in VR coordinate frame (HMDVR) (using Lighthouse)
• Where is your hand in VR coordinate frame?
• Combine transformations in each coordinate frame
• HVR = HLM x LMHMD x HMDVR
HAPTIC/TACTILE DISPLAYS
Haptic Feedback
• Greatly improves realism
• Hands and wrist are most important
• High density of touch receptors
• Two kinds of feedback:
• Touch Feedback
• information on texture, temperature, etc.
• Does not resist user contact
• Force Feedback
• information on weight, and inertia.
• Actively resists contact motion
Active Haptics
• Actively resists motion
• Key properties
• Force resistance
• Frequency Response
• Degrees of Freedom
• Latency
Example: Phantom Omni
• Combined stylus input/haptic output
• 6 DOF haptic feedback
Phantom Omni Demo
• https://www.youtube.com/watch?v=REA97hRX0WQ
Haptic Glove
• Many examples of haptic gloves
• Typically use mechanical device to provide haptic feedback
Passive Haptics
• Not controlled by system
• Use real props (Styrofoam for walls)
• Pros
• Cheap
• Large scale
• Accurate
• Cons
• Not dynamic
• Limited use
UNC Being There Project
Passive Haptic Paddle
• Using physical props to provide haptic feedback
• http://www.cs.wpi.edu/~gogo/hive/
Tactile Feedback Interfaces
• Goal: Stimulate skin tactile receptors
• Using different technologies
• Air bellows
• Jets
• Actuators (commercial)
• Micropin arrays
• Electrical (research)
• Neuromuscular stimulations (research)
Vibrotactile Cueing Devices
• Vibrotactile feedback has been incorporated into many
devices
• Can we use this technology to provide scalable, wearable
touch cues?
Vibrotactile Feedback Projects
Navy TSAS Project
TactaBoard and
TactaVest
Example: HaptX Glove
• https://www.youtube.com/watch?v=4K-MLVqD1_A
Teslasuit
• Full body haptic feedback - https://teslasuit.io/
• Electrical muscle stimulation
• https://www.youtube.com/watch?v=74QvAfxHdQY
AUDIO DISPLAYS
Audio Displays
• Spatialization vs. Localization
• Spatialization is the processing of sound signals to make
them emanate from a point in space
• This is a technical topic
• Localization is the ability of people to identify the source
position of a sound
• This is a human topic, i.e., some people are better at it than others.
Audio Display Properties
Presentation Properties
• Number of channels
• Sound stage
• Localization
• Masking
• Amplification
Logistical Properties
• Noise pollution
• User mobility
• Interface with tracking
• Integration
• Portability
• Throughput
• Safety
• Cost
Audio Displays: Head-worn
Ear Buds On Ear Open
Back
Closed Bone
Conduction
Head-Related Transfer Functions (HRTFs)
• A set of functions that model how sound from a source at
a known location reaches the eardrum
Measuring HRTFs
• Putting microphones in Manikin or human ears
• Playing sound from fixed positions
• Record response
Capturing 3D Audio for Playback
• Binaural recording
• 3D Sound recording, from microphones in simulated ears
• Hear some examples (use headphones)
• http://binauralenthusiast.com/examples/
OSSIC 3D Audio Headphones
• https://www.ossic.com/3d-audio/
OSSIC Demo
• https://www.youtube.com/watch?v=WjvofhhzTik
VR INPUT DEVICES
VR Input Devices
• Physical devices that convey information into the application
and support interaction in the Virtual Environment
Mapping Between Input and Output
Input
Output
Motivation
• Mouse and keyboard are good for desktop UI tasks
• Text entry, selection, drag and drop, scrolling, rubber banding, …
• 2D mouse for 2D windows
• What devices are best for 3D input in VR?
• Use multiple 2D input devices?
• Use new types of devices?
vs.
Input Device Characteristics
• Size and shape, encumbrance
• Degrees of Freedom
• Integrated (mouse) vs. separable (Etch-a-sketch)
• Direct vs. indirect manipulation
• Relative vs. Absolute input
• Relative: measure difference between current and last input (mouse)
• Absolute: measure input relative to a constant point of reference (tablet)
• Rate control vs. position control
• Isometric vs. Isotonic
• Isometric: measure pressure or force with no actual movement
• Isotonic: measure deflection from a center point (e.g. mouse)
Hand Input Devices
• Devices that integrate hand input into VR
• World-Grounded input devices
• Devices fixed in real world (e.g. joystick)
• Non-Tracked handheld controllers
• Devices held in hand, but not tracked in 3D (e.g. xbox controller)
• Tracked handheld controllers
• Physical device with 6 DOF tracking inside (e.g. Vive controllers)
• Hand-Worn Devices
• Gloves, EMG bands, rings, or devices worn on hand/arm
• Bare Hand Input
• Using technology to recognize natural hand input
World Grounded Devices
• Devices constrained or fixed in real world
• Not ideal for VR
• Constrains user motion
• Good for VR vehicle metaphor
• Used in location based entertainment (e.g. Disney Aladdin ride)
Disney Aladdin Magic Carpet VR Ride
Non-Tracked Handheld Controllers
• Devices held in hand
• Buttons, joysticks, game controllers, etc.
• Traditional video game controllers
• Xbox controller
Tracked Handheld Controllers (3 or 6 DoF)
• Handheld controller with 6 DOF tracking
• Combines button/joystick input plus tracking
• One of the best options for VR applications
• Physical prop enhancing VR presence
• Providing proprioceptive, passive haptic touch cues
• Direct mapping to real hand motion
HTC Vive Controllers Oculus Touch Controllers
Example: Sixense STEM
• Wireless motion tracking + button input
• Electromagnetic tracking, 8 foot range, 5 tracked receivers
• http://sixense.com/wireless
Sixense Demo Video
• https://www.youtube.com/watch?v=2lY3XI0zDWw
Example: WMR Handheld Controllers
• Windows Mixed Reality Controllers
• Left and right hand
• Combine computer vision + IMU tracking
• Track both in and out of view
• Button input, Vibration feedback
https://www.youtube.com/watch?v=rkDpRllbLII
Cubic Mouse
• Plastic box
• Polhemus Fastrack inside (magnetic 6 DOF tracking)
• 3 translating rods, 6 buttons
• Two handed interface
• Supports object rotation, zooming, cutting plane, etc.
Fröhlich, B., & Plate, J. (2000). The cubic mouse: a new device for three-dimensional input.
In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (pp. 526-
531). ACM.
Cubic Mouse Video
• https://www.youtube.com/watch?v=1WuH7ezv_Gs
Hand Worn Devices
• Devices worn on hands/arms
• Glove, EMG sensors, rings, etc.
• Advantages
• Natural input with potentially rich gesture interaction
• Hands can be held in comfortable positions – no line of sight issues
• Hands and fingers can fully interact with real objects
Myo Arm Band
• https://www.youtube.com/watch?v=1f_bAXHckUY
Data Gloves
• Bend sensing gloves
• Passive input device
• Detecting hand posture and gestures
• Continuous raw data from bend sensors
• Fiber optic, resistive ink, strain-gauge
• Large DOF output, natural hand output
• Pinch gloves
• Conductive material at fingertips
• Determine if fingertips touching
• Used for discrete input
• Object selection, mode switching, etc.
How Pinch Gloves Work
• Contact between conductive
fabric completes circuit
• Each finger receives voltage
in turn (T3 – T7)
• Look for output voltage at
different times
Example: Cyberglove
• Invented to support sign language
• Technology
• Thin electrical strain gauges over fingers
• Bending sensors changes resistence
• 18-22 sensors per glove, 120 Hz samples
• Sensor resolution 0.5o
• Very expensive
• >$10,000/glove
• http://www.cyberglovesystems.com
How CyberGlove Works
• Strain gauge at joints
• Connected to A/D converter
Demo Video
• https://www.youtube.com/watch?v=IUNx4FgQmas
StretchSense
• Wearable motion capture sensors
• Capacitive sensors
• Measure stretch, pressure, bend, shear
• Many applications
• Garments, gloves, etc.
• http://stretchsense.com/
StretchSense Glove Demo
• https://www.youtube.com/watch?v=wYsZS0p5uu8
Comparison of Glove Performance
From Burdea, Virtual Reality Technology, 2003
Bare Hands
• Using computer vision to track bare hand input
• Creates compelling sense of Presence, natural interaction
• Challenges need to be solved
• Not having sense of touch
• Line of sight required to sensor
• Fatigue from holding hands in front of sensor
Leap Motion
• IR based sensor for hand tracking ($50 USD)
• HMD + Leap Motion = Hand input in VR
• Technology
• 3 IR LEDS and 2 wide angle cameras
• The LEDS generate patternless IR light
• IR reflections picked up by cameras
• Software performs hand tracking
• Performance
• 1m range, 0.7 mm accuracy, 200Hz
• https://www.leapmotion.com/
Example: Leap Motion
• https://www.youtube.com/watch?v=QD4qQBL0X80
Non-Hand Input Devices
• Capturing input from other parts of the body
• Head Tracking
• Use head motion for input
• Eye Tracking
• Largely unexplored for VR
• Microphones
• Audio input, speech
• Full-Body tracking
• Motion capture, body movement
Eye Tracking
• Technology
• Shine IR light into eye and look for reflections
• Advantages
• Provides natural hands-free input
• Gaze provides cues as to user attention
• Can be combined with other input technologies
Example: FOVE VR Headset
• Eye tracker integrated into VR HMD
• Gaze driven user interface, foveated rendering
• https://www.youtube.com/watch?v=8dwdzPaqsDY
Pupil Labs VIVE/Oculus Add-ons
• Adds eye-tracking to HTC Vive/Oculus Rift HMDs
• Mono or stereo eye-tracking
• 120 Hz eye tracking, gaze accuracy of 0.6° with precision of 0.08°
• Open source software for eye-tracking
• https://pupil-labs.com/pupil/
HTC Vive Pro Eye
• HTC Vive Pro with integrated eye-tracking
• Tobii systems eye-tracker
• Easy calibration and set-up
• Auto-calibration software compensates for HMD motion
• https://www.youtube.com/watch?v=y_jdjjNrJyk
Full Body Tracking
• Adding full-body input into VR
• Creates illusion of self-embodiment
• Significantly enhances sense of Presence
• Technologies
• Motion capture suit, camera based systems
• Can track large number of significant feature points
Camera Based Motion Capture
• Use multiple cameras
• Reflective markers on body
• Eg – Opitrack (www.optitrack.com)
• 120 – 360 fps, < 10ms latency, < 1mm accuracy
Optitrack Demo
• https://www.youtube.com/watch?v=tBAvjU0ScuI
Wearable Motion Capture: PrioVR
• Wearable motion capture system
• 8 – 17 inertial sensors + wireless data transmission
• 30 – 40m range, 7.5 ms latency, 0.09o
precision
• Supports full range of motion, no occlusion
• www.priovr.com
PrioVR Demo
• https://www.youtube.com/watch?v=q72iErtvhNc
Pedestrian Devices
• Pedestrian input in VR
• Walking/running in VR
• Virtuix Omni
• Special shoes
• http://www.virtuix.com
• Cyberith Virtualizer
• Socks + slippery surface
• http://cyberith.com
Cyberith Virtualizer Demo
• https://www.youtube.com/watch?v=R8lmf3OFrms
Virtusphere
• Fully immersive sphere
• Support walking, running in VR
• Person inside trackball
• http://www.virtusphere.com
Virtusphere Demo
• https://www.youtube.com/watch?v=5PSFCnrk0GI
Omnidirectional Treadmills
• Infinadeck
• 2 axis treadmill, flexible material
• Tracks user to keep them in centre
• Limitless walking input in VR
• www.infinadeck.com
Infinadeck Demo
• https://www.youtube.com/watch?v=seML5CQBzP8
Comparison Between Devices
From Jerald (2015)
Comparing between hand
and non-hand input
Input Device Taxonomies
• Helps to determine:
• Which devices can be used for each other
• What devices to use for particular tasks
• Many different approaches
• Separate the input device from interaction technique (Foley 1974)
• Mapping basic interactive tasks to devices (Foley 1984)
• Basic tasks – select, position, orient, etc.
• Devices – mouse, joystick, touch panel, etc.
• Consider Degrees of Freedom and properties sensed (Buxton 1983)
• motion, position, pressure
• Distinguish bet. absolute/relative input, individual axes (Mackinlay 1990)
• separate translation, rotation axes instead of using DOF
Foley and Wallace Taxonomy (1974)
Separate device from
interaction technique
Buxton Input Device Taxonomy (Buxton 1983)
• Classified according to degrees of freedom and property sensed
• M = devise uses an intermediary between hand and sensing system
• T = touch sensitive
www.empathiccomputing.org
@marknb00
mark.billinghurst@unisa.edu.au

Más contenido relacionado

La actualidad más candente

2022 COMP4010 Lecture1: Introduction to XR
2022 COMP4010 Lecture1: Introduction to XR2022 COMP4010 Lecture1: Introduction to XR
2022 COMP4010 Lecture1: Introduction to XRMark Billinghurst
 
TREND TECHNOLOGY,general seminar ,DEGREE SEMINAR TOPICS,PG SEMINAR, VIRTUAL R...
TREND TECHNOLOGY,general seminar ,DEGREE SEMINAR TOPICS,PG SEMINAR, VIRTUAL R...TREND TECHNOLOGY,general seminar ,DEGREE SEMINAR TOPICS,PG SEMINAR, VIRTUAL R...
TREND TECHNOLOGY,general seminar ,DEGREE SEMINAR TOPICS,PG SEMINAR, VIRTUAL R...9895353186
 
2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR Technology2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR TechnologyMark Billinghurst
 
COMP 4010 Lecture10: AR Tracking
COMP 4010 Lecture10: AR TrackingCOMP 4010 Lecture10: AR Tracking
COMP 4010 Lecture10: AR TrackingMark Billinghurst
 
COMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual RealityCOMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual RealityMark Billinghurst
 
Comp4010 Lecture7 Designing AR Systems
Comp4010 Lecture7 Designing AR SystemsComp4010 Lecture7 Designing AR Systems
Comp4010 Lecture7 Designing AR SystemsMark Billinghurst
 
Comp4010 lecture3-AR Technology
Comp4010 lecture3-AR TechnologyComp4010 lecture3-AR Technology
Comp4010 lecture3-AR TechnologyMark Billinghurst
 
COMP 4010 - Lecture 3 VR Systems
COMP 4010 - Lecture 3 VR SystemsCOMP 4010 - Lecture 3 VR Systems
COMP 4010 - Lecture 3 VR SystemsMark Billinghurst
 
COMP 4010 - Lecture1 Introduction to Virtual Reality
COMP 4010 - Lecture1 Introduction to Virtual RealityCOMP 4010 - Lecture1 Introduction to Virtual Reality
COMP 4010 - Lecture1 Introduction to Virtual RealityMark Billinghurst
 
Grand Challenges for Mixed Reality
Grand Challenges for Mixed Reality Grand Challenges for Mixed Reality
Grand Challenges for Mixed Reality Mark Billinghurst
 
COMP 4010 - Lecture 2: Presence in Virtual Reality
COMP 4010 - Lecture 2: Presence in Virtual RealityCOMP 4010 - Lecture 2: Presence in Virtual Reality
COMP 4010 - Lecture 2: Presence in Virtual RealityMark Billinghurst
 
Comp4010 Lecture13 More Research Directions
Comp4010 Lecture13 More Research DirectionsComp4010 Lecture13 More Research Directions
Comp4010 Lecture13 More Research DirectionsMark Billinghurst
 
COMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
COMP 4010 - Lecture4 VR Technology - Visual and Haptic DisplaysCOMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
COMP 4010 - Lecture4 VR Technology - Visual and Haptic DisplaysMark Billinghurst
 
Comp4010 2021 Lecture2-Perception
Comp4010 2021 Lecture2-PerceptionComp4010 2021 Lecture2-Perception
Comp4010 2021 Lecture2-PerceptionMark Billinghurst
 
COMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VRCOMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VRMark Billinghurst
 
virtual reality | latest |best presentation
virtual reality | latest |best presentationvirtual reality | latest |best presentation
virtual reality | latest |best presentationvipin mishra
 
Comp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsComp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsMark Billinghurst
 

La actualidad más candente (20)

2022 COMP4010 Lecture1: Introduction to XR
2022 COMP4010 Lecture1: Introduction to XR2022 COMP4010 Lecture1: Introduction to XR
2022 COMP4010 Lecture1: Introduction to XR
 
TREND TECHNOLOGY,general seminar ,DEGREE SEMINAR TOPICS,PG SEMINAR, VIRTUAL R...
TREND TECHNOLOGY,general seminar ,DEGREE SEMINAR TOPICS,PG SEMINAR, VIRTUAL R...TREND TECHNOLOGY,general seminar ,DEGREE SEMINAR TOPICS,PG SEMINAR, VIRTUAL R...
TREND TECHNOLOGY,general seminar ,DEGREE SEMINAR TOPICS,PG SEMINAR, VIRTUAL R...
 
2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR Technology2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR Technology
 
COMP 4010 Lecture10: AR Tracking
COMP 4010 Lecture10: AR TrackingCOMP 4010 Lecture10: AR Tracking
COMP 4010 Lecture10: AR Tracking
 
COMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual RealityCOMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual Reality
 
Comp4010 Lecture7 Designing AR Systems
Comp4010 Lecture7 Designing AR SystemsComp4010 Lecture7 Designing AR Systems
Comp4010 Lecture7 Designing AR Systems
 
Comp4010 lecture3-AR Technology
Comp4010 lecture3-AR TechnologyComp4010 lecture3-AR Technology
Comp4010 lecture3-AR Technology
 
COMP 4010 - Lecture 3 VR Systems
COMP 4010 - Lecture 3 VR SystemsCOMP 4010 - Lecture 3 VR Systems
COMP 4010 - Lecture 3 VR Systems
 
COMP 4010 - Lecture1 Introduction to Virtual Reality
COMP 4010 - Lecture1 Introduction to Virtual RealityCOMP 4010 - Lecture1 Introduction to Virtual Reality
COMP 4010 - Lecture1 Introduction to Virtual Reality
 
Grand Challenges for Mixed Reality
Grand Challenges for Mixed Reality Grand Challenges for Mixed Reality
Grand Challenges for Mixed Reality
 
COMP 4010 - Lecture 2: Presence in Virtual Reality
COMP 4010 - Lecture 2: Presence in Virtual RealityCOMP 4010 - Lecture 2: Presence in Virtual Reality
COMP 4010 - Lecture 2: Presence in Virtual Reality
 
Comp4010 Lecture13 More Research Directions
Comp4010 Lecture13 More Research DirectionsComp4010 Lecture13 More Research Directions
Comp4010 Lecture13 More Research Directions
 
COMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
COMP 4010 - Lecture4 VR Technology - Visual and Haptic DisplaysCOMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
COMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
 
Comp4010 2021 Lecture2-Perception
Comp4010 2021 Lecture2-PerceptionComp4010 2021 Lecture2-Perception
Comp4010 2021 Lecture2-Perception
 
COMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VRCOMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VR
 
virtual reality | latest |best presentation
virtual reality | latest |best presentationvirtual reality | latest |best presentation
virtual reality | latest |best presentation
 
Comp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsComp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research Directions
 
Virtual Reality
Virtual RealityVirtual Reality
Virtual Reality
 
AR-VR Workshop
AR-VR WorkshopAR-VR Workshop
AR-VR Workshop
 
Virtual reality
Virtual realityVirtual reality
Virtual reality
 

Similar a Lecture3 - VR Technology

COMP 4010 Lecture6 - Virtual Reality Input Devices
COMP 4010 Lecture6 - Virtual Reality Input DevicesCOMP 4010 Lecture6 - Virtual Reality Input Devices
COMP 4010 Lecture6 - Virtual Reality Input DevicesMark Billinghurst
 
COMP 4010 Lecture 3 VR Input and Systems
COMP 4010 Lecture 3 VR Input and SystemsCOMP 4010 Lecture 3 VR Input and Systems
COMP 4010 Lecture 3 VR Input and SystemsMark Billinghurst
 
Study of Tactile interactions for visually disabled and hearing impaired
Study of  Tactile interactions for visually disabled and hearing impaired Study of  Tactile interactions for visually disabled and hearing impaired
Study of Tactile interactions for visually disabled and hearing impaired Abu Saleh Musa
 
Mobile AR Lecture 2 - Technology
Mobile AR Lecture 2 - TechnologyMobile AR Lecture 2 - Technology
Mobile AR Lecture 2 - TechnologyMark Billinghurst
 
Study of Tactile interactions for visually disabled and hearing impaired
Study of Tactile interactions for visually disabled and hearing impaired Study of Tactile interactions for visually disabled and hearing impaired
Study of Tactile interactions for visually disabled and hearing impaired Taslima Projucti
 
COMP 4010 Lecture10 AR/VR Research Directions
COMP 4010 Lecture10 AR/VR Research DirectionsCOMP 4010 Lecture10 AR/VR Research Directions
COMP 4010 Lecture10 AR/VR Research DirectionsMark Billinghurst
 
COMP 4010 Lecture5 VR Audio and Tracking
COMP 4010 Lecture5 VR Audio and TrackingCOMP 4010 Lecture5 VR Audio and Tracking
COMP 4010 Lecture5 VR Audio and TrackingMark Billinghurst
 
COMP 4010 Lecture12 - Research Directions in AR and VR
COMP 4010 Lecture12 - Research Directions in AR and VRCOMP 4010 Lecture12 - Research Directions in AR and VR
COMP 4010 Lecture12 - Research Directions in AR and VRMark Billinghurst
 
2016 AR Summer School Lecture2
2016 AR Summer School Lecture22016 AR Summer School Lecture2
2016 AR Summer School Lecture2Mark Billinghurst
 
eng.pptx
eng.pptxeng.pptx
eng.pptxZuine
 
COMP 4010: Lecture8 - AR Technology
COMP 4010: Lecture8 - AR TechnologyCOMP 4010: Lecture8 - AR Technology
COMP 4010: Lecture8 - AR TechnologyMark Billinghurst
 
Comp4010 Lecture10 VR Interface Design
Comp4010 Lecture10 VR Interface DesignComp4010 Lecture10 VR Interface Design
Comp4010 Lecture10 VR Interface DesignMark Billinghurst
 
Mobile AR Lecture 10 - Research Directions
Mobile AR Lecture 10 - Research DirectionsMobile AR Lecture 10 - Research Directions
Mobile AR Lecture 10 - Research DirectionsMark Billinghurst
 
COMP 4010 - Lecture 4: 3D User Interfaces
COMP 4010 - Lecture 4: 3D User InterfacesCOMP 4010 - Lecture 4: 3D User Interfaces
COMP 4010 - Lecture 4: 3D User InterfacesMark Billinghurst
 
Collecting big data in cinemas to improve recommendation systems - a model wi...
Collecting big data in cinemas to improve recommendation systems - a model wi...Collecting big data in cinemas to improve recommendation systems - a model wi...
Collecting big data in cinemas to improve recommendation systems - a model wi...ICDEcCnferenece
 
Citron : Context Information Acquisition Framework on Personal Devices
Citron : Context Information Acquisition Framework on Personal DevicesCitron : Context Information Acquisition Framework on Personal Devices
Citron : Context Information Acquisition Framework on Personal DevicesTetsuo Yamabe
 
2016 AR Summer School - Lecture 5
2016 AR Summer School - Lecture 52016 AR Summer School - Lecture 5
2016 AR Summer School - Lecture 5Mark Billinghurst
 

Similar a Lecture3 - VR Technology (20)

COMP 4010 Lecture6 - Virtual Reality Input Devices
COMP 4010 Lecture6 - Virtual Reality Input DevicesCOMP 4010 Lecture6 - Virtual Reality Input Devices
COMP 4010 Lecture6 - Virtual Reality Input Devices
 
COMP 4010 Lecture 3 VR Input and Systems
COMP 4010 Lecture 3 VR Input and SystemsCOMP 4010 Lecture 3 VR Input and Systems
COMP 4010 Lecture 3 VR Input and Systems
 
Study of Tactile interactions for visually disabled and hearing impaired
Study of  Tactile interactions for visually disabled and hearing impaired Study of  Tactile interactions for visually disabled and hearing impaired
Study of Tactile interactions for visually disabled and hearing impaired
 
Mobile AR Lecture 2 - Technology
Mobile AR Lecture 2 - TechnologyMobile AR Lecture 2 - Technology
Mobile AR Lecture 2 - Technology
 
Study of Tactile interactions for visually disabled and hearing impaired
Study of Tactile interactions for visually disabled and hearing impaired Study of Tactile interactions for visually disabled and hearing impaired
Study of Tactile interactions for visually disabled and hearing impaired
 
COMP 4010 Lecture10 AR/VR Research Directions
COMP 4010 Lecture10 AR/VR Research DirectionsCOMP 4010 Lecture10 AR/VR Research Directions
COMP 4010 Lecture10 AR/VR Research Directions
 
COMP 4010 Lecture5 VR Audio and Tracking
COMP 4010 Lecture5 VR Audio and TrackingCOMP 4010 Lecture5 VR Audio and Tracking
COMP 4010 Lecture5 VR Audio and Tracking
 
COMP 4010 Lecture12 - Research Directions in AR and VR
COMP 4010 Lecture12 - Research Directions in AR and VRCOMP 4010 Lecture12 - Research Directions in AR and VR
COMP 4010 Lecture12 - Research Directions in AR and VR
 
Augmented Reality
Augmented RealityAugmented Reality
Augmented Reality
 
2016 AR Summer School Lecture2
2016 AR Summer School Lecture22016 AR Summer School Lecture2
2016 AR Summer School Lecture2
 
eng.pptx
eng.pptxeng.pptx
eng.pptx
 
Semantics and Sensors
Semantics and SensorsSemantics and Sensors
Semantics and Sensors
 
COMP 4010: Lecture8 - AR Technology
COMP 4010: Lecture8 - AR TechnologyCOMP 4010: Lecture8 - AR Technology
COMP 4010: Lecture8 - AR Technology
 
Comp4010 Lecture10 VR Interface Design
Comp4010 Lecture10 VR Interface DesignComp4010 Lecture10 VR Interface Design
Comp4010 Lecture10 VR Interface Design
 
Mobile AR Lecture 10 - Research Directions
Mobile AR Lecture 10 - Research DirectionsMobile AR Lecture 10 - Research Directions
Mobile AR Lecture 10 - Research Directions
 
COMP 4010 - Lecture 4: 3D User Interfaces
COMP 4010 - Lecture 4: 3D User InterfacesCOMP 4010 - Lecture 4: 3D User Interfaces
COMP 4010 - Lecture 4: 3D User Interfaces
 
Collecting big data in cinemas to improve recommendation systems - a model wi...
Collecting big data in cinemas to improve recommendation systems - a model wi...Collecting big data in cinemas to improve recommendation systems - a model wi...
Collecting big data in cinemas to improve recommendation systems - a model wi...
 
Citron : Context Information Acquisition Framework on Personal Devices
Citron : Context Information Acquisition Framework on Personal DevicesCitron : Context Information Acquisition Framework on Personal Devices
Citron : Context Information Acquisition Framework on Personal Devices
 
2016 AR Summer School - Lecture 5
2016 AR Summer School - Lecture 52016 AR Summer School - Lecture 5
2016 AR Summer School - Lecture 5
 
Sensor's inside
Sensor's insideSensor's inside
Sensor's inside
 

Más de Mark Billinghurst

IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Future Research Directions for Augmented Reality
Future Research Directions for Augmented RealityFuture Research Directions for Augmented Reality
Future Research Directions for Augmented RealityMark Billinghurst
 
Evaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesEvaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesMark Billinghurst
 
Empathic Computing: Delivering the Potential of the Metaverse
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the MetaverseMark Billinghurst
 
Empathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseEmpathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseMark Billinghurst
 
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationTalk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationMark Billinghurst
 
Empathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseEmpathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseMark Billinghurst
 
2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR Systems2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR SystemsMark Billinghurst
 
Novel Interfaces for AR Systems
Novel Interfaces for AR SystemsNovel Interfaces for AR Systems
Novel Interfaces for AR SystemsMark Billinghurst
 
2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR PrototypingMark Billinghurst
 
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR InteractionMark Billinghurst
 
Empathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsEmpathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsMark Billinghurst
 
Empathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseEmpathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseMark Billinghurst
 
Research Directions in Transitional Interfaces
Research Directions in Transitional InterfacesResearch Directions in Transitional Interfaces
Research Directions in Transitional InterfacesMark Billinghurst
 
Comp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsComp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsMark Billinghurst
 
Advanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise ARAdvanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise ARMark Billinghurst
 
Comp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VRComp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VRMark Billinghurst
 

Más de Mark Billinghurst (19)

IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Future Research Directions for Augmented Reality
Future Research Directions for Augmented RealityFuture Research Directions for Augmented Reality
Future Research Directions for Augmented Reality
 
Evaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesEvaluation Methods for Social XR Experiences
Evaluation Methods for Social XR Experiences
 
Empathic Computing: Delivering the Potential of the Metaverse
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the Metaverse
 
Empathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseEmpathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the Metaverse
 
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationTalk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
 
Empathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseEmpathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader Metaverse
 
2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR Systems2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR Systems
 
ISS2022 Keynote
ISS2022 KeynoteISS2022 Keynote
ISS2022 Keynote
 
Novel Interfaces for AR Systems
Novel Interfaces for AR SystemsNovel Interfaces for AR Systems
Novel Interfaces for AR Systems
 
2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping
 
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction
 
Empathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsEmpathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive Analytics
 
Metaverse Learning
Metaverse LearningMetaverse Learning
Metaverse Learning
 
Empathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseEmpathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole Metaverse
 
Research Directions in Transitional Interfaces
Research Directions in Transitional InterfacesResearch Directions in Transitional Interfaces
Research Directions in Transitional Interfaces
 
Comp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsComp4010 lecture11 VR Applications
Comp4010 lecture11 VR Applications
 
Advanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise ARAdvanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise AR
 
Comp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VRComp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VR
 

Último

Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 

Último (20)

Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 

Lecture3 - VR Technology

  • 1. LECTURE 3: VR TECHNOLOGY COMP 4010 – Virtual Reality Semester 5 - 2019 Bruce Thomas, Mark Billinghurst, Gun Lee University of South Australia August 13th 2019
  • 2. • Presence • Perception and VR • Human Perception • Sight, hearing, touch, smell, taste • VR Technology • Visual display Recap – Lecture 2
  • 3. Presence .. “The subjective experience of being in one place or environment even when physically situated in another” Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and virtual environments, 7(3), 225-240.
  • 4. How do We Perceive Reality? • We understand the world through our senses: • Sight, Hearing, Touch, Taste, Smell (and others..) • Two basic processes: • Sensation – Gathering information • Perception – Interpreting information
  • 6. Creating the Illusion of Reality • Fooling human perception by using technology to generate artificial sensations • Computer generated sights, sounds, smell, etc
  • 7. Reality vs. Virtual Reality • In a VR system there are input and output devices between human perception and action
  • 8. Using Technology to Stimulate Senses • Simulate output • E.g. simulate real scene • Map output to devices • Graphics to HMD • Use devices to stimulate the senses • HMD stimulates eyes Visual Simulation 3D Graphics HMD Vision System Brain Example: Visual Simulation Human-Machine Interface
  • 9. Creating an Immersive Experience •Head Mounted Display •Immerse the eyes •Projection/Large Screen •Immerse the head/body •Future Technologies •Neural implants •Contact lens displays, etc
  • 10. HMD Basic Principles • Use display with optics to create illusion of virtual screen
  • 11. Key Properties of HMDs • Lens • Focal length, Field of View • Occularity, Interpupillary distance • Eye relief, Eye box • Display • Resolution, contrast • Power, brightness • Refresh rate • Ergonomics • Size, weight • Wearability
  • 14. Tracking in VR • Need for Tracking • User turns their head and the VR graphics scene changes • User wants to walking through a virtual scene • User reaches out and grab a virtual object • The user wants to use a real prop in VR • All of these require technology to track the user or object • Continuously provide information about position and orientation Head Tracking Hand Tracking
  • 15. • Degree of Freedom = independent movement about an axis • 3 DoF Orientation = roll, pitch, yaw (rotation about x, y, or z axis) • 3 DoF Translation = movement along x,y,z axis • Different requirements • User turns their head in VR -> needs 3 DoF orientation tracker • Moving in VR -> needs a 6 DoF tracker (r,p,y) and (x, y, z) Degrees of Freedom
  • 16. Tracking and Rendering in VR Tracking fits into the graphics pipeline for VR
  • 17. Tracking Technologies § Active (device sends out signal) • Mechanical, Magnetic, Ultrasonic • GPS, Wifi, cell location § Passive (device senses world) • Inertial sensors (compass, accelerometer, gyro) • Computer Vision • Marker based, Natural feature tracking § Hybrid Tracking • Combined sensors (eg Vision + Inertial)
  • 19. MechanicalTracker (Active) •Idea: mechanical arms with joint sensors •++: high accuracy, haptic feedback •-- : cumbersome, expensive Microscribe Sutherland
  • 20. MagneticTracker (Active) • Idea: difference between a magnetic transmitter and a receiver • ++: 6DOF, robust • -- : wired, sensible to metal, noisy, expensive • -- : error increases with distance Flock of Birds (Ascension)
  • 21. Example: Razer Hydra • Developed by Sixense • Magnetic source + 2 wired controllers • Short range (1-2 m) • Precision of 1mm and 1o • $600 USD
  • 22. Razor Hydra Demo • https://www.youtube.com/watch?v=jnqFdSa5p7w
  • 23. InertialTracker (Passive) • Idea: measuring linear and angular orientation rates (accelerometer/gyroscope) • ++: no transmitter, cheap, small, high frequency, wireless • -- : drift, hysteris only 3DOF IS300 (Intersense) Wii Remote
  • 24. OpticalTracker (Passive) • Idea: Image Processing and ComputerVision • Specialized • Infrared, Retro-Reflective, Stereoscopic • Monocular BasedVisionTracking ART Hi-Ball
  • 26. Example: Vive Lighthouse Tracking • Outside-in tracking system • 2 base stations • Each with 2 laser scanners, LED array • Headworn/handheld sensors • 37 photo-sensors in HMD, 17 in hand • Additional IMU sensors (500 Hz) • Performance • Tracking server fuses sensor samples • Sampling rate 250 Hz, 4 ms latency • See http://doc-ok.org/?p=1478
  • 27. Lighthouse Components Base station - IR LED array - 2 x scanned lasers Head Mounted Display - 37 photo sensors - 9 axis IMU
  • 29. Lighthouse Tracking Base station scanning https://www.youtube.com/watch?v=avBt_P0wg_Y https://www.youtube.com/watch?v=oqPaaMR4kY4 Room tracking
  • 30. Example: Oculus Quest • Inside out tracking • Four cameras on corner of display • Searching for visual features • On setup creates map of room
  • 31. Oculus Quest Tracking • https://www.youtube.com/watch?v=2jY3B_F3GZk
  • 32. Occipital Bridge Engine/Structure Core • Inside out tracking • Uses structured light • Better than room scale tracking • Integrated into bridge HMD • https://structure.io/
  • 34. Tracking Coordinate Frames • There can be several coordinate frames to consider • Head pose with respect to real world • Coordinate fame of tracking system wrt HMD • Position of hand in coordinate frame of hand tracker
  • 35. Example: Finding your hand in VR • Using Lighthouse and LeapMotion • Multiple Coordinate Frames • LeapMotion tracks hand in LeapMotion coordinate frame (HLM) • LeapMotion is fixed in HMD coordinate frame (LMHMD) • HMD is tracked in VR coordinate frame (HMDVR) (using Lighthouse) • Where is your hand in VR coordinate frame? • Combine transformations in each coordinate frame • HVR = HLM x LMHMD x HMDVR
  • 37. Haptic Feedback • Greatly improves realism • Hands and wrist are most important • High density of touch receptors • Two kinds of feedback: • Touch Feedback • information on texture, temperature, etc. • Does not resist user contact • Force Feedback • information on weight, and inertia. • Actively resists contact motion
  • 38. Active Haptics • Actively resists motion • Key properties • Force resistance • Frequency Response • Degrees of Freedom • Latency
  • 39. Example: Phantom Omni • Combined stylus input/haptic output • 6 DOF haptic feedback
  • 40. Phantom Omni Demo • https://www.youtube.com/watch?v=REA97hRX0WQ
  • 41. Haptic Glove • Many examples of haptic gloves • Typically use mechanical device to provide haptic feedback
  • 42. Passive Haptics • Not controlled by system • Use real props (Styrofoam for walls) • Pros • Cheap • Large scale • Accurate • Cons • Not dynamic • Limited use
  • 43. UNC Being There Project
  • 44. Passive Haptic Paddle • Using physical props to provide haptic feedback • http://www.cs.wpi.edu/~gogo/hive/
  • 45. Tactile Feedback Interfaces • Goal: Stimulate skin tactile receptors • Using different technologies • Air bellows • Jets • Actuators (commercial) • Micropin arrays • Electrical (research) • Neuromuscular stimulations (research)
  • 46. Vibrotactile Cueing Devices • Vibrotactile feedback has been incorporated into many devices • Can we use this technology to provide scalable, wearable touch cues?
  • 47. Vibrotactile Feedback Projects Navy TSAS Project TactaBoard and TactaVest
  • 48. Example: HaptX Glove • https://www.youtube.com/watch?v=4K-MLVqD1_A
  • 49. Teslasuit • Full body haptic feedback - https://teslasuit.io/ • Electrical muscle stimulation
  • 52. Audio Displays • Spatialization vs. Localization • Spatialization is the processing of sound signals to make them emanate from a point in space • This is a technical topic • Localization is the ability of people to identify the source position of a sound • This is a human topic, i.e., some people are better at it than others.
  • 53. Audio Display Properties Presentation Properties • Number of channels • Sound stage • Localization • Masking • Amplification Logistical Properties • Noise pollution • User mobility • Interface with tracking • Integration • Portability • Throughput • Safety • Cost
  • 54. Audio Displays: Head-worn Ear Buds On Ear Open Back Closed Bone Conduction
  • 55. Head-Related Transfer Functions (HRTFs) • A set of functions that model how sound from a source at a known location reaches the eardrum
  • 56. Measuring HRTFs • Putting microphones in Manikin or human ears • Playing sound from fixed positions • Record response
  • 57. Capturing 3D Audio for Playback • Binaural recording • 3D Sound recording, from microphones in simulated ears • Hear some examples (use headphones) • http://binauralenthusiast.com/examples/
  • 58. OSSIC 3D Audio Headphones • https://www.ossic.com/3d-audio/
  • 61. VR Input Devices • Physical devices that convey information into the application and support interaction in the Virtual Environment
  • 62. Mapping Between Input and Output Input Output
  • 63. Motivation • Mouse and keyboard are good for desktop UI tasks • Text entry, selection, drag and drop, scrolling, rubber banding, … • 2D mouse for 2D windows • What devices are best for 3D input in VR? • Use multiple 2D input devices? • Use new types of devices? vs.
  • 64. Input Device Characteristics • Size and shape, encumbrance • Degrees of Freedom • Integrated (mouse) vs. separable (Etch-a-sketch) • Direct vs. indirect manipulation • Relative vs. Absolute input • Relative: measure difference between current and last input (mouse) • Absolute: measure input relative to a constant point of reference (tablet) • Rate control vs. position control • Isometric vs. Isotonic • Isometric: measure pressure or force with no actual movement • Isotonic: measure deflection from a center point (e.g. mouse)
  • 65. Hand Input Devices • Devices that integrate hand input into VR • World-Grounded input devices • Devices fixed in real world (e.g. joystick) • Non-Tracked handheld controllers • Devices held in hand, but not tracked in 3D (e.g. xbox controller) • Tracked handheld controllers • Physical device with 6 DOF tracking inside (e.g. Vive controllers) • Hand-Worn Devices • Gloves, EMG bands, rings, or devices worn on hand/arm • Bare Hand Input • Using technology to recognize natural hand input
  • 66. World Grounded Devices • Devices constrained or fixed in real world • Not ideal for VR • Constrains user motion • Good for VR vehicle metaphor • Used in location based entertainment (e.g. Disney Aladdin ride) Disney Aladdin Magic Carpet VR Ride
  • 67. Non-Tracked Handheld Controllers • Devices held in hand • Buttons, joysticks, game controllers, etc. • Traditional video game controllers • Xbox controller
  • 68. Tracked Handheld Controllers (3 or 6 DoF) • Handheld controller with 6 DOF tracking • Combines button/joystick input plus tracking • One of the best options for VR applications • Physical prop enhancing VR presence • Providing proprioceptive, passive haptic touch cues • Direct mapping to real hand motion HTC Vive Controllers Oculus Touch Controllers
  • 69. Example: Sixense STEM • Wireless motion tracking + button input • Electromagnetic tracking, 8 foot range, 5 tracked receivers • http://sixense.com/wireless
  • 70. Sixense Demo Video • https://www.youtube.com/watch?v=2lY3XI0zDWw
  • 71. Example: WMR Handheld Controllers • Windows Mixed Reality Controllers • Left and right hand • Combine computer vision + IMU tracking • Track both in and out of view • Button input, Vibration feedback
  • 73. Cubic Mouse • Plastic box • Polhemus Fastrack inside (magnetic 6 DOF tracking) • 3 translating rods, 6 buttons • Two handed interface • Supports object rotation, zooming, cutting plane, etc. Fröhlich, B., & Plate, J. (2000). The cubic mouse: a new device for three-dimensional input. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (pp. 526- 531). ACM.
  • 74. Cubic Mouse Video • https://www.youtube.com/watch?v=1WuH7ezv_Gs
  • 75. Hand Worn Devices • Devices worn on hands/arms • Glove, EMG sensors, rings, etc. • Advantages • Natural input with potentially rich gesture interaction • Hands can be held in comfortable positions – no line of sight issues • Hands and fingers can fully interact with real objects
  • 76. Myo Arm Band • https://www.youtube.com/watch?v=1f_bAXHckUY
  • 77. Data Gloves • Bend sensing gloves • Passive input device • Detecting hand posture and gestures • Continuous raw data from bend sensors • Fiber optic, resistive ink, strain-gauge • Large DOF output, natural hand output • Pinch gloves • Conductive material at fingertips • Determine if fingertips touching • Used for discrete input • Object selection, mode switching, etc.
  • 78. How Pinch Gloves Work • Contact between conductive fabric completes circuit • Each finger receives voltage in turn (T3 – T7) • Look for output voltage at different times
  • 79. Example: Cyberglove • Invented to support sign language • Technology • Thin electrical strain gauges over fingers • Bending sensors changes resistence • 18-22 sensors per glove, 120 Hz samples • Sensor resolution 0.5o • Very expensive • >$10,000/glove • http://www.cyberglovesystems.com
  • 80. How CyberGlove Works • Strain gauge at joints • Connected to A/D converter
  • 82. StretchSense • Wearable motion capture sensors • Capacitive sensors • Measure stretch, pressure, bend, shear • Many applications • Garments, gloves, etc. • http://stretchsense.com/
  • 83. StretchSense Glove Demo • https://www.youtube.com/watch?v=wYsZS0p5uu8
  • 84. Comparison of Glove Performance From Burdea, Virtual Reality Technology, 2003
  • 85. Bare Hands • Using computer vision to track bare hand input • Creates compelling sense of Presence, natural interaction • Challenges need to be solved • Not having sense of touch • Line of sight required to sensor • Fatigue from holding hands in front of sensor
  • 86. Leap Motion • IR based sensor for hand tracking ($50 USD) • HMD + Leap Motion = Hand input in VR • Technology • 3 IR LEDS and 2 wide angle cameras • The LEDS generate patternless IR light • IR reflections picked up by cameras • Software performs hand tracking • Performance • 1m range, 0.7 mm accuracy, 200Hz • https://www.leapmotion.com/
  • 87. Example: Leap Motion • https://www.youtube.com/watch?v=QD4qQBL0X80
  • 88. Non-Hand Input Devices • Capturing input from other parts of the body • Head Tracking • Use head motion for input • Eye Tracking • Largely unexplored for VR • Microphones • Audio input, speech • Full-Body tracking • Motion capture, body movement
  • 89. Eye Tracking • Technology • Shine IR light into eye and look for reflections • Advantages • Provides natural hands-free input • Gaze provides cues as to user attention • Can be combined with other input technologies
  • 90. Example: FOVE VR Headset • Eye tracker integrated into VR HMD • Gaze driven user interface, foveated rendering • https://www.youtube.com/watch?v=8dwdzPaqsDY
  • 91. Pupil Labs VIVE/Oculus Add-ons • Adds eye-tracking to HTC Vive/Oculus Rift HMDs • Mono or stereo eye-tracking • 120 Hz eye tracking, gaze accuracy of 0.6° with precision of 0.08° • Open source software for eye-tracking • https://pupil-labs.com/pupil/
  • 92. HTC Vive Pro Eye • HTC Vive Pro with integrated eye-tracking • Tobii systems eye-tracker • Easy calibration and set-up • Auto-calibration software compensates for HMD motion
  • 94. Full Body Tracking • Adding full-body input into VR • Creates illusion of self-embodiment • Significantly enhances sense of Presence • Technologies • Motion capture suit, camera based systems • Can track large number of significant feature points
  • 95. Camera Based Motion Capture • Use multiple cameras • Reflective markers on body • Eg – Opitrack (www.optitrack.com) • 120 – 360 fps, < 10ms latency, < 1mm accuracy
  • 97. Wearable Motion Capture: PrioVR • Wearable motion capture system • 8 – 17 inertial sensors + wireless data transmission • 30 – 40m range, 7.5 ms latency, 0.09o precision • Supports full range of motion, no occlusion • www.priovr.com
  • 99. Pedestrian Devices • Pedestrian input in VR • Walking/running in VR • Virtuix Omni • Special shoes • http://www.virtuix.com • Cyberith Virtualizer • Socks + slippery surface • http://cyberith.com
  • 100. Cyberith Virtualizer Demo • https://www.youtube.com/watch?v=R8lmf3OFrms
  • 101. Virtusphere • Fully immersive sphere • Support walking, running in VR • Person inside trackball • http://www.virtusphere.com
  • 103. Omnidirectional Treadmills • Infinadeck • 2 axis treadmill, flexible material • Tracks user to keep them in centre • Limitless walking input in VR • www.infinadeck.com
  • 105. Comparison Between Devices From Jerald (2015) Comparing between hand and non-hand input
  • 106. Input Device Taxonomies • Helps to determine: • Which devices can be used for each other • What devices to use for particular tasks • Many different approaches • Separate the input device from interaction technique (Foley 1974) • Mapping basic interactive tasks to devices (Foley 1984) • Basic tasks – select, position, orient, etc. • Devices – mouse, joystick, touch panel, etc. • Consider Degrees of Freedom and properties sensed (Buxton 1983) • motion, position, pressure • Distinguish bet. absolute/relative input, individual axes (Mackinlay 1990) • separate translation, rotation axes instead of using DOF
  • 107. Foley and Wallace Taxonomy (1974) Separate device from interaction technique
  • 108. Buxton Input Device Taxonomy (Buxton 1983) • Classified according to degrees of freedom and property sensed • M = devise uses an intermediary between hand and sensing system • T = touch sensitive