SlideShare una empresa de Scribd logo
1 de 25
Descargar para leer sin conexión
LABORATORY
TECHNIQUES
A VISUAL PRESENTATION BY GROUP 2
CENTRIFUGATION
LABORATORY
TECHNIQUES
CENTRIFUGATION
DEFINITION
∞ Centrifugation is a process which
involves the application of
the centripetal force for
the sedimentation of heterogeneous
mixtures with a centrifuge, and is
used in industrial and laboratory
settings. This process is used to
separate two immiscible substances.
More-dense components of the
mixture migrate away from the axis
of the centrifuge, while less-dense
components of the mixture migrate
towards the axis.
CENTRIFUGATION
APPARATUS USED
∞ A centrifuge is a piece of equipment that puts an object
in rotation around a fixed axis (spins it in a circle), applying
a potentially strong force perpendicular to the axis of spin
(outward). The centrifuge works using the sedimentation
principle, where the centripetal acceleration causes denser
substances and particles to move outward in the radial
direction. At the same time, objects that are less dense are
displaced and move to the center. In a laboratory
centrifuge that uses sample tubes, the radial acceleration
causes denser particles to settle to the bottom of the tube,
while low-density substances rise to the top.
CHROMATOGRAPHY
LABORATORY
TECHNIQUES
CHROMATOGRAPHY
DEFINITION
∞ Chromatography is the collective term for a set of laboratory
techniques for the separation of mixtures.
∞ Chromatography may be preparative or analytical.
∞ The purpose of preparative chromatography is to separate the
components of a mixture for more advanced use (and is thus a form
of purification).
∞ one of the most useful analytical techniques chemists have at their
disposal, helpful in everything from identifying biological materials
to finding clues at crime scenes.
∞The moving substance is called the mobile phase and the substance
that stays put is the stationary phase. As the mobile phase moves, it
separates out into its components on the stationary phase.
TYPES OF
CHROMATOGRAPHY
CHROMATOGRAPHY: TYPES
PAPER
CHROMATOGRAPHY
∞ This is the "spot of ink on paper"
experiment you often do in school (also the
effect we described at the start when you
get your papers wet). Typically you put a
spot of ink near one edge of some filter
paper and then hang the paper vertically
with its lower edge (nearest the spot) dipped
in a solvent such as alcohol or water.
Capillary action makes the solvent travel up
the paper, where it meets and dissolves the
ink. The dissolved ink (the mobile phase)
slowly travels up the paper (the stationary
phase and separates out into different
components. Sometimes these are colored;
sometimes you have to color them by
adding other substances (called developers
or developing fluids) that help you with
identification.
CHROMATOGRAPHY: TYPES
COLUMN
CHROMATOGRAPHY
∞ Instead of paper, the stationary phase is a
vertical glass jar (the column) packed with a
highly adsorbent solid, such as crystals of
silica or silica gel, or a solid coated with a
liquid. The mobile phase is pumped at high
pressure through the column and splits into
its components, which are then removed and
analyzed. In liquid-column chromatography,
the mixture being studied is placed at one
end of the column and an extra added
substance called an eluant is poured in to
help it travel through. Thin-film
chromatography is a variation of this
technique in which the "column" is actually
a film of glass, plastic, or metal coated with a
very thin layer of adsorbent material
CHROMATOGRAPHY: TYPES
GAS CHROMATOGRAPHY
∞ is a largely automated type of chemical
analysis you can do with a sophisticated
piece of laboratory equipment called, not
surprisingly, a gas chromatograph
machine.
∞ First, a tiny sample of the mixture of
substances being studied is placed in a
syringe and injected into the machine. The
components of the mixture are heated and
instantly vaporize. Next, we add a carrier
(the eluant), which is simply a neutral gas
such as hydrogen or helium, designed to
help the gases in our sample move through
the column.
CHROMATOGRAPHY: TYPES
GAS CHROMATOGRAPHY
∞ In this case, the column is a thin glass or metal tube usually
filled with a liquid that has a high boiling point (or sometimes a
gel or an adsorbent solid). As the mixture travels through the
column, it's adsorbed and separates out into its components.
Each component emerges in turn from the end of the column
and moves past an electronic detector (sometimes a mass
spectrometer), which identifies it and prints a peak on a chart.
The final chart has a series of peaks that correspond to all the
substances in the mixture. Gas chromatography is sometimes
called vapor-phase chromatography (VPC) or gas-liquid
partition chromatography (GLPC).
CHROMATOGRAPHY
TOOLS AND APPARATUS USED
▸The column is where the actual separation takes
place. It is usually a glass or metal of with sufficient
strength to handle pressure.
▸A packed bed column in compromised of a stationary
phase which is granular form and packed into the
column as homogenous bed. The stationary phase
complete fills the column.
▸An open tubular column’s stationary phase is a thin
film or layer on the column wall.
CHROMATOGRAPHY
THE MOBILE AND STATIONARY PHASES
The mobile phase is comprised of a solvent into
which the sample is injected. The solvent and sample
flow through the column together; thus the mobile
phase is often referred to as the "carrier fluid." The
stationary phase is the material in the column for
which the components to be separated have varying
affinities. The materials which comprise the mobile
and stationary phases vary depending on the general
type of chromatographic process being performed.
CHROMATOGRAPHY
HOW DOES IT WORK?
Think of chromatography as a race and you'll find it's
much simpler than it sounds. Waiting on the starting line,
you've got a mixture of chemicals in some unidentified
liquid or gas, just like a load of runners all mixed up and
bunched together. When a race starts, runners soon
spread out because they have different abilities. In exactly
the same way, chemicals in something like a moving
liquid mixture spread out because they travel at different
speeds over a stationary solid. The key thing to remember
is that chromatography is a surface effect.
CHROMATOGRAPHY
HOW DOES IT WORK?
For chromatography to work effectively, we obviously need the
components of the mobile phase to separate out as much as possible
as they move past the stationary phase. That's why the stationary
phase is often something with a large surface area, such as a sheet of
filter paper, a solid made of finely divided particles, a liquid deposited
on the surface of a solid, or some other highly adsorbent material.
The mixture is dissolved in a fluid called the mobile phase, which
carries it through a structure holding another material called the
stationary phase. Different rates of migration cause the various
constituents of the mixture to travel at different speeds, causing them
to separate.
GEL
ELECTROPHORESIS
LABORATORY
TECHNIQUES
GEL ELECTROPHORESIS
DEFINITION
∞ Gel electrophoresis is a method for separation
and analysis of macromolecules
(DNA, RNA and proteins) and their fragments,
based on their size and charge. It is used in
clinical chemistry to separate proteins by charge
and/or size (IEF agarose, essentially size
independent) and in biochemistry and molecular
biology to separate a mixed population
of DNA and RNA fragments by length, to
estimate the size of DNA and RNA fragments or
to separate proteins by charge.
∞ Nucleic acid molecules are separated by
applying an electric field to move the negatively
charged molecules through a matrix of
GEL ELECTROPHORESIS
PHYSICAL BASIS
In simple terms, electrophoresis is a
process which enables the sorting of
molecules based on size. Using an electric
field, molecules (such as DNA) can be
made to move through a gel made
of agar or polyacrylamide. The electric
field consists of a negative charge at one
end which pushes the molecules through
the gel, and a positive charge at the other
end that pulls the molecules through the
gel. The molecules being sorted are
dispensed into a well in the gel material.
The gel is placed in an electrophoresis
GEL ELECTROPHORESIS
HISTORY
• 1930s – first reports of the use of sucrose for gel electrophoresis
• 1955 – introduction of starch gels, mediocre separation
• 1959 – introduction of acrylamide gels; disc electrophoresis (Ornstein and Davis); accurate
control of parameters such as pore size and stability; and (Raymond and Weintraub)
• 1966 – agar gels
• 1969 – introduction of denaturing agents especially SDS separation of protein subunit
(Weber and Osborn)
• 1970 – Laemmli separated 28 components of T4 phage using a stacking gel and SDS
• 1972 – agarose gels with ethidium bromide stain
• 1975 – 2-dimensional gels (O’Farrell); isoelectric focusing then SDS gel electrophoresis
• 1977 – sequencing gels
• 1983 – pulsed field gel electrophoresis enables separation of large DNA molecules
• 1983 – introduction of capillary electrophoresis
• 2004 – standardized time of polymerization of acrylamide gels enables clean and
predictable separation of native proteins
TYPES OF
GEL
GEL ELECTROPHORESIS: TYPES OF GEL
AGAROSE
Agarose gels are made from the
natural polysaccharide polymers extracted
from seaweed. Agarose gels are easily cast
and handled compared to other matrices,
because the gel setting is a physical rather
than chemical change. Samples are also
easily recovered. After the experiment is
finished, the resulting gel can be stored in a
plastic bag in a refrigerator.
Agarose gels do not have a uniform pore
size, but are optimal for electrophoresis of
proteins that are larger than 200
GEL ELECTROPHORESIS: TYPES OF GEL
POLYACRYLAMIDE
Polyacrylamide gel electrophoresis (PAGE) is
used for separating proteins ranging in size from
5 to 2,000 kDa due to the uniform pore size
provided by the polyacrylamide gel. Pore size is
controlled by modulating the concentrations of
acrylamide and bis-acrylamide powder used in
creating a gel. Care must be used when creating
this type of gel, as acrylamide is a potent
neurotoxin in its liquid and powdered forms.
Traditional DNA sequencing techniques such
as Maxam-Gilbert or Sanger methods used
polyacrylamide gels to separate DNA fragments
differing by a single base-pair in length so the
sequence could be read. Most modern DNA
GEL ELECTROPHORESIS: TYPES OF GEL
STARCH
Partially hydrolysed potato
starch makes for another non-
toxic medium for protein
electrophoresis. The gels are
slightly more opaque than
acrylamide or agarose. Non-
denatured proteins can be
separated according to charge
and size. They are visualised
using Napthal Black or Amido
GEL ELECTROPHORESIS
GEL CONDITIONS
∞ Denaturing gels are run under conditions that disrupt the natural
structure of the analyte, causing it to unfold into a linear chain. Thus, the
mobility of each macromolecule depends only on its linear length and its
mass-to-charge ratio. Thus, the secondary, tertiary, and quaternary levels
of biomolecular structure are disrupted, leaving only the primary structure
to be analyzed.
∞ Native gels are run in non-denaturing conditions, so that the analyte's
natural structure is maintained. This allows the physical size of the folded
or assembled complex to affect the mobility, allowing for analysis of all
four levels of the biomolecular structure. For biological samples,
GEL ELECTROPHORESIS
PROCESS
Buffers in gel electrophoresis are used to provide ions that carry a current and to maintain
the pH at a relatively constant value. There are a number of buffers used for electrophoresis.
The most common being, for nucleic acids Tris/Acetate/EDTA (TAE), Tris/Borate/EDTA (TBE).
After the electrophoresis is complete, the molecules in the gel can be stained to make them
visible. DNA may be visualized using ethidium bromide which, when intercalated into DNA,
fluoresce under ultraviolet light, while protein may be visualised using silver stain or
Coomassie Brilliant Blue dye.
After separation, an additional separation method may then be used, such as isoelectric
focusing or SDS-PAGE. The gel will then be physically cut, and the protein complexes
extracted from each portion separately. Each extract may then be analysed, such as by
peptide mass fingerprinting or de novo peptide sequencing after in-gel digestion. This can
provide a great deal of information about the identities of the proteins in a complex.

Más contenido relacionado

La actualidad más candente

SMX East: Recovering From Core Updates - Lily Ray
SMX East: Recovering From Core Updates - Lily RaySMX East: Recovering From Core Updates - Lily Ray
SMX East: Recovering From Core Updates - Lily RayLily Ray
 
Fully Automated Link Building - Brighton SEO.pdf
Fully Automated Link Building - Brighton SEO.pdfFully Automated Link Building - Brighton SEO.pdf
Fully Automated Link Building - Brighton SEO.pdfSam Oh
 
How to do User Research on a shoestring budget
How to do User Research on a shoestring budgetHow to do User Research on a shoestring budget
How to do User Research on a shoestring budgetAngus Carbarns
 
eCommerce Internal Linking - Into the Spider-Verse (BrightonSEO edition)
eCommerce Internal Linking - Into the Spider-Verse (BrightonSEO edition)eCommerce Internal Linking - Into the Spider-Verse (BrightonSEO edition)
eCommerce Internal Linking - Into the Spider-Verse (BrightonSEO edition)Kristina Azarenko
 
SEO Toronto Presentation
SEO Toronto PresentationSEO Toronto Presentation
SEO Toronto PresentationSEO Toronto
 
SXSW 2016 takeaways
SXSW 2016 takeawaysSXSW 2016 takeaways
SXSW 2016 takeawaysHavas
 
Software is Eating Bio
Software is Eating BioSoftware is Eating Bio
Software is Eating Bioa16z
 
Google Trends Presentation
Google Trends PresentationGoogle Trends Presentation
Google Trends PresentationJessica Fritz
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
10 Must-HAve GA4 Reports for SEO - Brighton SEO Apr 2023
10 Must-HAve GA4 Reports for SEO - Brighton SEO Apr 202310 Must-HAve GA4 Reports for SEO - Brighton SEO Apr 2023
10 Must-HAve GA4 Reports for SEO - Brighton SEO Apr 2023AccuraCast
 
Digital 2023 Sweden (February 2023) v01
Digital 2023 Sweden (February 2023) v01Digital 2023 Sweden (February 2023) v01
Digital 2023 Sweden (February 2023) v01DataReportal
 
Content Design & its Role in SEO and Accessibility [BrightonSEO Spring 2023]
Content Design & its Role in SEO and Accessibility [BrightonSEO Spring 2023]Content Design & its Role in SEO and Accessibility [BrightonSEO Spring 2023]
Content Design & its Role in SEO and Accessibility [BrightonSEO Spring 2023]Chloe Smith
 
Introduction to SEO
Introduction to SEOIntroduction to SEO
Introduction to SEORand Fishkin
 
Digital 2023 Oman (February 2023) v01
Digital 2023 Oman (February 2023) v01Digital 2023 Oman (February 2023) v01
Digital 2023 Oman (February 2023) v01DataReportal
 
Digital 2023 United Kingdom (February 2023) v01
Digital 2023 United Kingdom (February 2023) v01Digital 2023 United Kingdom (February 2023) v01
Digital 2023 United Kingdom (February 2023) v01DataReportal
 
brightonSEO April 2023 - Sarah Presch - The Psychology Behind Inclusive iSEO ...
brightonSEO April 2023 - Sarah Presch - The Psychology Behind Inclusive iSEO ...brightonSEO April 2023 - Sarah Presch - The Psychology Behind Inclusive iSEO ...
brightonSEO April 2023 - Sarah Presch - The Psychology Behind Inclusive iSEO ...Sarah Presch
 
How to launch 'new concept' products & services in new markets | Dave Cousin ...
How to launch 'new concept' products & services in new markets | Dave Cousin ...How to launch 'new concept' products & services in new markets | Dave Cousin ...
How to launch 'new concept' products & services in new markets | Dave Cousin ...Oban International
 
Ogilvy-Brand-Guidelines.pdf
Ogilvy-Brand-Guidelines.pdfOgilvy-Brand-Guidelines.pdf
Ogilvy-Brand-Guidelines.pdfyecay1
 

La actualidad más candente (20)

SMX East: Recovering From Core Updates - Lily Ray
SMX East: Recovering From Core Updates - Lily RaySMX East: Recovering From Core Updates - Lily Ray
SMX East: Recovering From Core Updates - Lily Ray
 
Fully Automated Link Building - Brighton SEO.pdf
Fully Automated Link Building - Brighton SEO.pdfFully Automated Link Building - Brighton SEO.pdf
Fully Automated Link Building - Brighton SEO.pdf
 
How to do User Research on a shoestring budget
How to do User Research on a shoestring budgetHow to do User Research on a shoestring budget
How to do User Research on a shoestring budget
 
eCommerce Internal Linking - Into the Spider-Verse (BrightonSEO edition)
eCommerce Internal Linking - Into the Spider-Verse (BrightonSEO edition)eCommerce Internal Linking - Into the Spider-Verse (BrightonSEO edition)
eCommerce Internal Linking - Into the Spider-Verse (BrightonSEO edition)
 
SEO Toronto Presentation
SEO Toronto PresentationSEO Toronto Presentation
SEO Toronto Presentation
 
SXSW 2016 takeaways
SXSW 2016 takeawaysSXSW 2016 takeaways
SXSW 2016 takeaways
 
Software is Eating Bio
Software is Eating BioSoftware is Eating Bio
Software is Eating Bio
 
Google Trends Presentation
Google Trends PresentationGoogle Trends Presentation
Google Trends Presentation
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
10 Must-HAve GA4 Reports for SEO - Brighton SEO Apr 2023
10 Must-HAve GA4 Reports for SEO - Brighton SEO Apr 202310 Must-HAve GA4 Reports for SEO - Brighton SEO Apr 2023
10 Must-HAve GA4 Reports for SEO - Brighton SEO Apr 2023
 
Digital 2023 Sweden (February 2023) v01
Digital 2023 Sweden (February 2023) v01Digital 2023 Sweden (February 2023) v01
Digital 2023 Sweden (February 2023) v01
 
Content Design & its Role in SEO and Accessibility [BrightonSEO Spring 2023]
Content Design & its Role in SEO and Accessibility [BrightonSEO Spring 2023]Content Design & its Role in SEO and Accessibility [BrightonSEO Spring 2023]
Content Design & its Role in SEO and Accessibility [BrightonSEO Spring 2023]
 
DuckDuckGo preso
DuckDuckGo presoDuckDuckGo preso
DuckDuckGo preso
 
Introduction to SEO
Introduction to SEOIntroduction to SEO
Introduction to SEO
 
Digital 2023 Oman (February 2023) v01
Digital 2023 Oman (February 2023) v01Digital 2023 Oman (February 2023) v01
Digital 2023 Oman (February 2023) v01
 
Digital 2023 United Kingdom (February 2023) v01
Digital 2023 United Kingdom (February 2023) v01Digital 2023 United Kingdom (February 2023) v01
Digital 2023 United Kingdom (February 2023) v01
 
brightonSEO April 2023 - Sarah Presch - The Psychology Behind Inclusive iSEO ...
brightonSEO April 2023 - Sarah Presch - The Psychology Behind Inclusive iSEO ...brightonSEO April 2023 - Sarah Presch - The Psychology Behind Inclusive iSEO ...
brightonSEO April 2023 - Sarah Presch - The Psychology Behind Inclusive iSEO ...
 
Google Search Console
Google Search ConsoleGoogle Search Console
Google Search Console
 
How to launch 'new concept' products & services in new markets | Dave Cousin ...
How to launch 'new concept' products & services in new markets | Dave Cousin ...How to launch 'new concept' products & services in new markets | Dave Cousin ...
How to launch 'new concept' products & services in new markets | Dave Cousin ...
 
Ogilvy-Brand-Guidelines.pdf
Ogilvy-Brand-Guidelines.pdfOgilvy-Brand-Guidelines.pdf
Ogilvy-Brand-Guidelines.pdf
 

Destacado

Electrophoresis presentation
Electrophoresis presentationElectrophoresis presentation
Electrophoresis presentationjyots23
 
Techniques of electrophoresis
Techniques of electrophoresisTechniques of electrophoresis
Techniques of electrophoresisSayanti Sau
 
Electrophoresis ppt.
Electrophoresis ppt.Electrophoresis ppt.
Electrophoresis ppt.gulamrafey
 

Destacado (8)

Electrophoresis
ElectrophoresisElectrophoresis
Electrophoresis
 
Electrophoresis
ElectrophoresisElectrophoresis
Electrophoresis
 
Paper electrophoresis
Paper electrophoresisPaper electrophoresis
Paper electrophoresis
 
Elecrophoresis
ElecrophoresisElecrophoresis
Elecrophoresis
 
Electrophoresis
ElectrophoresisElectrophoresis
Electrophoresis
 
Electrophoresis presentation
Electrophoresis presentationElectrophoresis presentation
Electrophoresis presentation
 
Techniques of electrophoresis
Techniques of electrophoresisTechniques of electrophoresis
Techniques of electrophoresis
 
Electrophoresis ppt.
Electrophoresis ppt.Electrophoresis ppt.
Electrophoresis ppt.
 

Similar a E sci presentation

Partition chromatography 3
Partition chromatography 3Partition chromatography 3
Partition chromatography 3MrSyedAmmar
 
CHROMATOGRAPHY - PHARMACEUTICAL ANALYSIS.pdf
CHROMATOGRAPHY - PHARMACEUTICAL ANALYSIS.pdfCHROMATOGRAPHY - PHARMACEUTICAL ANALYSIS.pdf
CHROMATOGRAPHY - PHARMACEUTICAL ANALYSIS.pdfBALASUNDARESAN M
 
Chromatography.ppt
Chromatography.pptChromatography.ppt
Chromatography.pptPrakashR129
 
CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.
CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.
CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.PiyashiDas
 
Chromatography (Pharmacognosy)
Chromatography (Pharmacognosy)Chromatography (Pharmacognosy)
Chromatography (Pharmacognosy)tahirsatz
 
Chromatography, types by different approaches, HPLC
Chromatography, types by  different approaches, HPLC Chromatography, types by  different approaches, HPLC
Chromatography, types by different approaches, HPLC Muhammad Asif Shaheeen
 
Paper Chromatography
Paper ChromatographyPaper Chromatography
Paper ChromatographyDivya Narla
 
Classification of chromatography
Classification of chromatographyClassification of chromatography
Classification of chromatographyJagdish Jat
 
Chromatography (Physical Chemistry Report)
Chromatography (Physical Chemistry Report)Chromatography (Physical Chemistry Report)
Chromatography (Physical Chemistry Report)Muhammad Mamdouh
 
Types of chromatography
Types of chromatographyTypes of chromatography
Types of chromatographyFizan Chee
 

Similar a E sci presentation (20)

Partition chromatography 3
Partition chromatography 3Partition chromatography 3
Partition chromatography 3
 
CHROMATOGRAPHY.pptx
CHROMATOGRAPHY.pptxCHROMATOGRAPHY.pptx
CHROMATOGRAPHY.pptx
 
chromatography, HPLC
 chromatography, HPLC chromatography, HPLC
chromatography, HPLC
 
Applied Biochemistry
Applied BiochemistryApplied Biochemistry
Applied Biochemistry
 
CHROMATOGRAPHY - PHARMACEUTICAL ANALYSIS.pdf
CHROMATOGRAPHY - PHARMACEUTICAL ANALYSIS.pdfCHROMATOGRAPHY - PHARMACEUTICAL ANALYSIS.pdf
CHROMATOGRAPHY - PHARMACEUTICAL ANALYSIS.pdf
 
Chromatography
ChromatographyChromatography
Chromatography
 
chromatography
chromatographychromatography
chromatography
 
PM PPT.ppt
PM PPT.pptPM PPT.ppt
PM PPT.ppt
 
PM PPT.ppt
PM PPT.pptPM PPT.ppt
PM PPT.ppt
 
Chromatography.ppt
Chromatography.pptChromatography.ppt
Chromatography.ppt
 
4_20115_PM.ppt
4_20115_PM.ppt4_20115_PM.ppt
4_20115_PM.ppt
 
Chromatography lecture2.pptx
Chromatography lecture2.pptxChromatography lecture2.pptx
Chromatography lecture2.pptx
 
CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.
CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.
CHROMATOGRAPHY - PRINCIPLE,APPLICATIONS.
 
Chromatography
ChromatographyChromatography
Chromatography
 
Chromatography (Pharmacognosy)
Chromatography (Pharmacognosy)Chromatography (Pharmacognosy)
Chromatography (Pharmacognosy)
 
Chromatography, types by different approaches, HPLC
Chromatography, types by  different approaches, HPLC Chromatography, types by  different approaches, HPLC
Chromatography, types by different approaches, HPLC
 
Paper Chromatography
Paper ChromatographyPaper Chromatography
Paper Chromatography
 
Classification of chromatography
Classification of chromatographyClassification of chromatography
Classification of chromatography
 
Chromatography (Physical Chemistry Report)
Chromatography (Physical Chemistry Report)Chromatography (Physical Chemistry Report)
Chromatography (Physical Chemistry Report)
 
Types of chromatography
Types of chromatographyTypes of chromatography
Types of chromatography
 

Último

AICTE activity on Water Conservation spreading awareness
AICTE activity on Water Conservation spreading awarenessAICTE activity on Water Conservation spreading awareness
AICTE activity on Water Conservation spreading awareness1hk20is002
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxGiDMOh
 
Role of Gibberellins, mode of action and external applications.pptx
Role of Gibberellins, mode of action and external applications.pptxRole of Gibberellins, mode of action and external applications.pptx
Role of Gibberellins, mode of action and external applications.pptxjana861314
 
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...jana861314
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer ZahanaEGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer ZahanaDr.Mahmoud Abbas
 
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...Chiheb Ben Hammouda
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxpriyankatabhane
 
Think Science: What Are Eclipses (101), by Craig Bobchin
Think Science: What Are Eclipses (101), by Craig BobchinThink Science: What Are Eclipses (101), by Craig Bobchin
Think Science: What Are Eclipses (101), by Craig BobchinNathan Cone
 
3.-Acknowledgment-Dedication-Abstract.docx
3.-Acknowledgment-Dedication-Abstract.docx3.-Acknowledgment-Dedication-Abstract.docx
3.-Acknowledgment-Dedication-Abstract.docxUlahVanessaBasa
 
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasBACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasChayanika Das
 
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxEnvironmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxpriyankatabhane
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
HEMATOPOIESIS - formation of blood cells
HEMATOPOIESIS - formation of blood cellsHEMATOPOIESIS - formation of blood cells
HEMATOPOIESIS - formation of blood cellsSachinSuresh44
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPRPirithiRaju
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfGABYFIORELAMALPARTID1
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGiovaniTrinidad
 

Último (20)

AICTE activity on Water Conservation spreading awareness
AICTE activity on Water Conservation spreading awarenessAICTE activity on Water Conservation spreading awareness
AICTE activity on Water Conservation spreading awareness
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptx
 
Role of Gibberellins, mode of action and external applications.pptx
Role of Gibberellins, mode of action and external applications.pptxRole of Gibberellins, mode of action and external applications.pptx
Role of Gibberellins, mode of action and external applications.pptx
 
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
Speed Breeding in Vegetable Crops- innovative approach for present era of cro...
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer ZahanaEGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
 
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...
Efficient Fourier Pricing of Multi-Asset Options: Quasi-Monte Carlo & Domain ...
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptx
 
Think Science: What Are Eclipses (101), by Craig Bobchin
Think Science: What Are Eclipses (101), by Craig BobchinThink Science: What Are Eclipses (101), by Craig Bobchin
Think Science: What Are Eclipses (101), by Craig Bobchin
 
3.-Acknowledgment-Dedication-Abstract.docx
3.-Acknowledgment-Dedication-Abstract.docx3.-Acknowledgment-Dedication-Abstract.docx
3.-Acknowledgment-Dedication-Abstract.docx
 
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasBACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
 
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxEnvironmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Introduction Classification Of Alkaloids
Introduction Classification Of AlkaloidsIntroduction Classification Of Alkaloids
Introduction Classification Of Alkaloids
 
Interferons.pptx.
Interferons.pptx.Interferons.pptx.
Interferons.pptx.
 
HEMATOPOIESIS - formation of blood cells
HEMATOPOIESIS - formation of blood cellsHEMATOPOIESIS - formation of blood cells
HEMATOPOIESIS - formation of blood cells
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptx
 
PLASMODIUM. PPTX
PLASMODIUM. PPTXPLASMODIUM. PPTX
PLASMODIUM. PPTX
 

E sci presentation

  • 3. CENTRIFUGATION DEFINITION ∞ Centrifugation is a process which involves the application of the centripetal force for the sedimentation of heterogeneous mixtures with a centrifuge, and is used in industrial and laboratory settings. This process is used to separate two immiscible substances. More-dense components of the mixture migrate away from the axis of the centrifuge, while less-dense components of the mixture migrate towards the axis.
  • 4. CENTRIFUGATION APPARATUS USED ∞ A centrifuge is a piece of equipment that puts an object in rotation around a fixed axis (spins it in a circle), applying a potentially strong force perpendicular to the axis of spin (outward). The centrifuge works using the sedimentation principle, where the centripetal acceleration causes denser substances and particles to move outward in the radial direction. At the same time, objects that are less dense are displaced and move to the center. In a laboratory centrifuge that uses sample tubes, the radial acceleration causes denser particles to settle to the bottom of the tube, while low-density substances rise to the top.
  • 6. CHROMATOGRAPHY DEFINITION ∞ Chromatography is the collective term for a set of laboratory techniques for the separation of mixtures. ∞ Chromatography may be preparative or analytical. ∞ The purpose of preparative chromatography is to separate the components of a mixture for more advanced use (and is thus a form of purification). ∞ one of the most useful analytical techniques chemists have at their disposal, helpful in everything from identifying biological materials to finding clues at crime scenes. ∞The moving substance is called the mobile phase and the substance that stays put is the stationary phase. As the mobile phase moves, it separates out into its components on the stationary phase.
  • 8. CHROMATOGRAPHY: TYPES PAPER CHROMATOGRAPHY ∞ This is the "spot of ink on paper" experiment you often do in school (also the effect we described at the start when you get your papers wet). Typically you put a spot of ink near one edge of some filter paper and then hang the paper vertically with its lower edge (nearest the spot) dipped in a solvent such as alcohol or water. Capillary action makes the solvent travel up the paper, where it meets and dissolves the ink. The dissolved ink (the mobile phase) slowly travels up the paper (the stationary phase and separates out into different components. Sometimes these are colored; sometimes you have to color them by adding other substances (called developers or developing fluids) that help you with identification.
  • 9. CHROMATOGRAPHY: TYPES COLUMN CHROMATOGRAPHY ∞ Instead of paper, the stationary phase is a vertical glass jar (the column) packed with a highly adsorbent solid, such as crystals of silica or silica gel, or a solid coated with a liquid. The mobile phase is pumped at high pressure through the column and splits into its components, which are then removed and analyzed. In liquid-column chromatography, the mixture being studied is placed at one end of the column and an extra added substance called an eluant is poured in to help it travel through. Thin-film chromatography is a variation of this technique in which the "column" is actually a film of glass, plastic, or metal coated with a very thin layer of adsorbent material
  • 10. CHROMATOGRAPHY: TYPES GAS CHROMATOGRAPHY ∞ is a largely automated type of chemical analysis you can do with a sophisticated piece of laboratory equipment called, not surprisingly, a gas chromatograph machine. ∞ First, a tiny sample of the mixture of substances being studied is placed in a syringe and injected into the machine. The components of the mixture are heated and instantly vaporize. Next, we add a carrier (the eluant), which is simply a neutral gas such as hydrogen or helium, designed to help the gases in our sample move through the column.
  • 11. CHROMATOGRAPHY: TYPES GAS CHROMATOGRAPHY ∞ In this case, the column is a thin glass or metal tube usually filled with a liquid that has a high boiling point (or sometimes a gel or an adsorbent solid). As the mixture travels through the column, it's adsorbed and separates out into its components. Each component emerges in turn from the end of the column and moves past an electronic detector (sometimes a mass spectrometer), which identifies it and prints a peak on a chart. The final chart has a series of peaks that correspond to all the substances in the mixture. Gas chromatography is sometimes called vapor-phase chromatography (VPC) or gas-liquid partition chromatography (GLPC).
  • 12. CHROMATOGRAPHY TOOLS AND APPARATUS USED ▸The column is where the actual separation takes place. It is usually a glass or metal of with sufficient strength to handle pressure. ▸A packed bed column in compromised of a stationary phase which is granular form and packed into the column as homogenous bed. The stationary phase complete fills the column. ▸An open tubular column’s stationary phase is a thin film or layer on the column wall.
  • 13. CHROMATOGRAPHY THE MOBILE AND STATIONARY PHASES The mobile phase is comprised of a solvent into which the sample is injected. The solvent and sample flow through the column together; thus the mobile phase is often referred to as the "carrier fluid." The stationary phase is the material in the column for which the components to be separated have varying affinities. The materials which comprise the mobile and stationary phases vary depending on the general type of chromatographic process being performed.
  • 14. CHROMATOGRAPHY HOW DOES IT WORK? Think of chromatography as a race and you'll find it's much simpler than it sounds. Waiting on the starting line, you've got a mixture of chemicals in some unidentified liquid or gas, just like a load of runners all mixed up and bunched together. When a race starts, runners soon spread out because they have different abilities. In exactly the same way, chemicals in something like a moving liquid mixture spread out because they travel at different speeds over a stationary solid. The key thing to remember is that chromatography is a surface effect.
  • 15. CHROMATOGRAPHY HOW DOES IT WORK? For chromatography to work effectively, we obviously need the components of the mobile phase to separate out as much as possible as they move past the stationary phase. That's why the stationary phase is often something with a large surface area, such as a sheet of filter paper, a solid made of finely divided particles, a liquid deposited on the surface of a solid, or some other highly adsorbent material. The mixture is dissolved in a fluid called the mobile phase, which carries it through a structure holding another material called the stationary phase. Different rates of migration cause the various constituents of the mixture to travel at different speeds, causing them to separate.
  • 17. GEL ELECTROPHORESIS DEFINITION ∞ Gel electrophoresis is a method for separation and analysis of macromolecules (DNA, RNA and proteins) and their fragments, based on their size and charge. It is used in clinical chemistry to separate proteins by charge and/or size (IEF agarose, essentially size independent) and in biochemistry and molecular biology to separate a mixed population of DNA and RNA fragments by length, to estimate the size of DNA and RNA fragments or to separate proteins by charge. ∞ Nucleic acid molecules are separated by applying an electric field to move the negatively charged molecules through a matrix of
  • 18. GEL ELECTROPHORESIS PHYSICAL BASIS In simple terms, electrophoresis is a process which enables the sorting of molecules based on size. Using an electric field, molecules (such as DNA) can be made to move through a gel made of agar or polyacrylamide. The electric field consists of a negative charge at one end which pushes the molecules through the gel, and a positive charge at the other end that pulls the molecules through the gel. The molecules being sorted are dispensed into a well in the gel material. The gel is placed in an electrophoresis
  • 19. GEL ELECTROPHORESIS HISTORY • 1930s – first reports of the use of sucrose for gel electrophoresis • 1955 – introduction of starch gels, mediocre separation • 1959 – introduction of acrylamide gels; disc electrophoresis (Ornstein and Davis); accurate control of parameters such as pore size and stability; and (Raymond and Weintraub) • 1966 – agar gels • 1969 – introduction of denaturing agents especially SDS separation of protein subunit (Weber and Osborn) • 1970 – Laemmli separated 28 components of T4 phage using a stacking gel and SDS • 1972 – agarose gels with ethidium bromide stain • 1975 – 2-dimensional gels (O’Farrell); isoelectric focusing then SDS gel electrophoresis • 1977 – sequencing gels • 1983 – pulsed field gel electrophoresis enables separation of large DNA molecules • 1983 – introduction of capillary electrophoresis • 2004 – standardized time of polymerization of acrylamide gels enables clean and predictable separation of native proteins
  • 21. GEL ELECTROPHORESIS: TYPES OF GEL AGAROSE Agarose gels are made from the natural polysaccharide polymers extracted from seaweed. Agarose gels are easily cast and handled compared to other matrices, because the gel setting is a physical rather than chemical change. Samples are also easily recovered. After the experiment is finished, the resulting gel can be stored in a plastic bag in a refrigerator. Agarose gels do not have a uniform pore size, but are optimal for electrophoresis of proteins that are larger than 200
  • 22. GEL ELECTROPHORESIS: TYPES OF GEL POLYACRYLAMIDE Polyacrylamide gel electrophoresis (PAGE) is used for separating proteins ranging in size from 5 to 2,000 kDa due to the uniform pore size provided by the polyacrylamide gel. Pore size is controlled by modulating the concentrations of acrylamide and bis-acrylamide powder used in creating a gel. Care must be used when creating this type of gel, as acrylamide is a potent neurotoxin in its liquid and powdered forms. Traditional DNA sequencing techniques such as Maxam-Gilbert or Sanger methods used polyacrylamide gels to separate DNA fragments differing by a single base-pair in length so the sequence could be read. Most modern DNA
  • 23. GEL ELECTROPHORESIS: TYPES OF GEL STARCH Partially hydrolysed potato starch makes for another non- toxic medium for protein electrophoresis. The gels are slightly more opaque than acrylamide or agarose. Non- denatured proteins can be separated according to charge and size. They are visualised using Napthal Black or Amido
  • 24. GEL ELECTROPHORESIS GEL CONDITIONS ∞ Denaturing gels are run under conditions that disrupt the natural structure of the analyte, causing it to unfold into a linear chain. Thus, the mobility of each macromolecule depends only on its linear length and its mass-to-charge ratio. Thus, the secondary, tertiary, and quaternary levels of biomolecular structure are disrupted, leaving only the primary structure to be analyzed. ∞ Native gels are run in non-denaturing conditions, so that the analyte's natural structure is maintained. This allows the physical size of the folded or assembled complex to affect the mobility, allowing for analysis of all four levels of the biomolecular structure. For biological samples,
  • 25. GEL ELECTROPHORESIS PROCESS Buffers in gel electrophoresis are used to provide ions that carry a current and to maintain the pH at a relatively constant value. There are a number of buffers used for electrophoresis. The most common being, for nucleic acids Tris/Acetate/EDTA (TAE), Tris/Borate/EDTA (TBE). After the electrophoresis is complete, the molecules in the gel can be stained to make them visible. DNA may be visualized using ethidium bromide which, when intercalated into DNA, fluoresce under ultraviolet light, while protein may be visualised using silver stain or Coomassie Brilliant Blue dye. After separation, an additional separation method may then be used, such as isoelectric focusing or SDS-PAGE. The gel will then be physically cut, and the protein complexes extracted from each portion separately. Each extract may then be analysed, such as by peptide mass fingerprinting or de novo peptide sequencing after in-gel digestion. This can provide a great deal of information about the identities of the proteins in a complex.