SlideShare una empresa de Scribd logo
1 de 25
By,
DAMARIS BENNY DANIEL
• Proteins are an important class of
biological macromolecules
which are the polymers of amino
acids.
• Biochemists have distinguished
several levels of structural
organization of proteins. They
are:
– Primary structure
– Secondary structure
– Tertiary structure
– Quaternary structure
INTRODUCTION
PRIMARY STRUCTURE
• The primary structure of protein refers to the sequence of amino
acids present in the polypeptide chain.
• Amino acids are covalently linked by peptide bonds.
• Each component amino acid in a polypeptide is called a “residue” or
“moiety”
• By convention, the 10 structure of a protein starts from the amino-
terminal (N) end and ends in the carboxyl-terminal (C) end.
IMPORTANCE OF PRIMARY STRUCTURE
• To predict 20 and 30 structures from sequence homologies with
related proteins. (Structure prediction)
• Many genetic diseases result from abnormal amino acid sequences.
• To understand the molecular mechanism of action of proteins.
• To trace evolutionary paths.
• End group analysis – Edman degradation.
• Gene sequencing method.
METHODS OF AMINO ACID SEQUENCE DETERMINATION
SECONDARY STRUCTURE
• Localized arrangement of adjacent amino acids formed as the polypeptide
chain folds.
• It consists of
• Linus Pauling proposed some essential features of peptide units and
polypeptide backbone. They are:
– The amide group is rigid and planar as a result of resonance. So rotation
about C-N bond is not feasible.
– Rotation can take place only about N- Cα and Cα – C bonds.
– Trans configuration is more stable than cis for R grps at Cα
• From these conclusions Pauling postulated 2 ordered structures α helix and
β sheet
α-helix
β-pleated sheet
β-bends
Non repetitive structures
Super secondary structures
POLYPEPTIDE
CHAIN CONFORMATIONS
• The only reasonably free movements
are rotations around the C α-N bond
(measured as ϕ ) and the C α-C bond
(measured as Ѱ).
• The conformation of the backbone
can therefore be described by the
torsion angles (also called dihedral
angles or rotation angles)
Animation showing Phi angle rotation at Psi = 0.
Animations showing Psi angle rotation at Phi = 0.
• White regions : Sterically
disallowed for all amino acids
except glycine.
• Red regions : allowed regions
namely the a-helical and b-sheet
conformations.
• Yellow areas : outer limit
A Ramachandran plot (also known as a Ramachandran diagram or
a [φ,ψ] plot), originally developed in 1963 by G. N. Ramachandran.
RAMACHANDRAN PLOT
• Spiral structure
• Tightly packed, coiled polypeptide
backbone core.
• Side chain extend outwards
• Stabilized by H bonding b/w
carbonyl oxygen and amide
hydrogen.
• Amino acids per turn – 3.6
• Pitch is 5.4 A
• Alpha helical segments are found in
many globular proteins like
myoglobins, troponin- C etc.
ALPHA HELIX
H bonding
• Formed when 2 or more polypeptides
line up side by side.
• Individual polypeptide - β strand
• Each β strand is fully extended.
• They are stabilized by H bond b/w N-H
and carbonyl grps of adjacent chains.
BETA PLEATED SHEET
2 types
Parallel Anti -Parallel
N C N
N NC
C
C
SECONDARY STRUCTURE
EXAMPLES
The collagen triple helix.
Silk fibroin beta sheet.
BETA BENDS
• Permits the change of direction of the
peptide chain to get a folded structure.
• It gives a protein globularity rather than
linearity.
• H bond stabilizes the beta bend
structure.
• Proline and Glycine are frequently
found in beta turns.
• Beta turns often promote the formation
of antiparallel beta sheets.
• Occur at protein surfaces.
• Involve four successive aminoacid
residues
NON REPETITIVE STRUCTURES
• A significant portion of globular
protein’s structure may be irregular
or unique.
• They include coils and loops.
• Segments of polypeptide chains
whose successive residues do not
have similar ϕ and Ѱ values are
called coils.
• Almost all proteins with more than
60 residues contain one or more
loops of 6 to 16 residues, called Ω
loops.
Space-filling model of an Ω loop
SUPER SECONDARY STRUCTURES
(MOTIFS)
Beta barrelβ-meander motif
beta-alpha-beta motif Greek key motif
Certain groupings of secondary structural elements are
called motifs.
TERTIARY STRUCTURE
• Tertiary structure is the three-
dimensional conformation of a
polypeptide.
• The common features of protein
tertiary structure reveal much about
the biological functions of the proteins
and their evolutionary origins.
• The function of a protein depends on
its tertiary structure. If this is disrupted,
it loses its activity.
DOMAINS
• Polypeptide chains containing more than ,200 residues usually
fold into two or more globular clusters known as domains.
• Fundamental functional and 3 dimensional structure of
proteins.
• Domains often have a specific function such as the binding of
a small molecule.
• Many domains are structurally independent units that have the
characteristics of small globular proteins.
The two-domain protein glyceraldehyde-
3-phosphate dehydrogenase.
NAD+
INTERACTIONS STABILIZING 30
STRUCTURE
• This final shape is
determined by a variety of
bonding interactions
between the "side chains"
on the amino acids.
• Hydrogen bonds
• Ionic Bonds
• Disulphide Bridges
• Hydrophobic Interactions:
TERTIARY STRUCTURE
DETERMINATION OF TERTIARY
STRUCTURE
• The known protein structures have come to light through:
• X-ray crystallographic studies
• Nuclear Magnetic Resonance studies
• The atomic coordinates of most of these structures are
deposited in a database known as the Protein Data Bank
(PDB).
• It allows the tertiary structures of a variety of proteins to be
analyzed and compared.
• The biological function of some
molecules is determined by multiple
polypeptide chains –
multimeric proteins.
• Arrangement of polypeptide sub unit
is called quaternary structure.
• Sub units are held together by non
covalent interactions.
• Eg: Hemoglobin has the subunit
composition a2b2
QUATERNARY STRUCTURE
Quaternary structure of hemoglobin.
RECENT DEVELOPMENTS
• A team of scientists at The Scripps Research Institute and the
National Institutes of Health (NIH) has discovered the
structure of a protein – dynamin, that pinches off tiny pouches
from cell’s outer membranes.
• Scientists at the Institute of Structural and Molecular Biology
have revealed the structure of a complex protein called FimD
that acts as an assembly platform for the pili of cystitis
bacteria.
• Researchers from the Walter and Eliza Hall Institute have
found a structural surprise in a type of protein, Bcl-w ,that
encourages cell survival, raising interesting questions about
how the proteins function to influence programmed cell death.
CONCLUSION
• Proteins are extraordinarily complex molecules. Of all the
molecules encountered in living organisms, proteins have the
most diverse functions.
• So a basic understanding of the structure of proteins is
necessary to comprehend its role in organisms.
• Further researches will provide more insight into the structure
of several other proteins in the coming year.
REFERENCE
• Voet, Donald; Voet Judith. Biochemistry, 3rd edition, John
Wiley and sons.
• Champe, Pamela.C, Harvey, Richard A, Ferrier Denise R
(2005). Lippincott’s Illustrated Reviews: Biochemistry, 3rd
edition. Lippincott William and Wilkins.
• McKee Trudy, McKee James R (2003), Biochemistry: The
molecular basis of life, 3rd edition, McGraw Hill.
• http://esciencenews.com/articles/2011/06/01/new.antibiotics.a.
step.closer.with.discovery.bacterial.protein.structure
• http://www.eurekalert.org/pub_releases/2010-04/sri-
srs042610.php
• http://www.physorg.com/news/2011-10-cell-survival-protein-
reveals.html

Más contenido relacionado

La actualidad más candente (20)

Amino acids
Amino acidsAmino acids
Amino acids
 
Electron transport chain
Electron transport chainElectron transport chain
Electron transport chain
 
Ramachandran plot
Ramachandran plotRamachandran plot
Ramachandran plot
 
DNA strcture and function
DNA strcture and functionDNA strcture and function
DNA strcture and function
 
Secondary Structure Of Protein (Repeating structure of protein)
Secondary Structure Of Protein (Repeating structure of protein)Secondary Structure Of Protein (Repeating structure of protein)
Secondary Structure Of Protein (Repeating structure of protein)
 
Active site of enzyme
Active site of enzymeActive site of enzyme
Active site of enzyme
 
Amino acid
Amino acid Amino acid
Amino acid
 
Protein Folding Mechanism
Protein Folding MechanismProtein Folding Mechanism
Protein Folding Mechanism
 
Determination of primary structure of proteins
Determination of primary structure of proteinsDetermination of primary structure of proteins
Determination of primary structure of proteins
 
DNA Replication
DNA ReplicationDNA Replication
DNA Replication
 
Ramachandran plot
Ramachandran plotRamachandran plot
Ramachandran plot
 
RNA- Structure, Types and Functions
RNA- Structure, Types and FunctionsRNA- Structure, Types and Functions
RNA- Structure, Types and Functions
 
Genetic code ppt
Genetic code pptGenetic code ppt
Genetic code ppt
 
amino acids
amino acidsamino acids
amino acids
 
STRUCTURAL ORGANIZATION OF PROTEINS
STRUCTURAL ORGANIZATION OF PROTEINSSTRUCTURAL ORGANIZATION OF PROTEINS
STRUCTURAL ORGANIZATION OF PROTEINS
 
Classification of lipids
Classification of lipidsClassification of lipids
Classification of lipids
 
Biosynthesis of purine & pyrimidine
Biosynthesis of purine & pyrimidine Biosynthesis of purine & pyrimidine
Biosynthesis of purine & pyrimidine
 
Nucleic acids
Nucleic acidsNucleic acids
Nucleic acids
 
Motif & Domain
Motif & DomainMotif & Domain
Motif & Domain
 
Watson and crick model of dna
Watson and crick model of dnaWatson and crick model of dna
Watson and crick model of dna
 

Destacado

Classification and properties of protein
Classification and properties of proteinClassification and properties of protein
Classification and properties of proteinMark Philip Besana
 
Protein Structure & Function
Protein Structure & FunctionProtein Structure & Function
Protein Structure & Functioniptharis
 
Protein structure
Protein structureProtein structure
Protein structuremartyynyyte
 
Secondary Structure Prediction of proteins
Secondary Structure Prediction of proteins Secondary Structure Prediction of proteins
Secondary Structure Prediction of proteins Vijay Hemmadi
 
Quaternary structure of protein
Quaternary structure of proteinQuaternary structure of protein
Quaternary structure of proteinArjun K Gopi
 
Protein Structure and Function
Protein Structure and FunctionProtein Structure and Function
Protein Structure and Functionangelsalaman
 
Protein structure & function
Protein structure & functionProtein structure & function
Protein structure & functionMerlyn Denesia
 
Nucleic acid structure
Nucleic acid structure Nucleic acid structure
Nucleic acid structure ranjani n
 
Protein function and bioinformatics
Protein function and bioinformaticsProtein function and bioinformatics
Protein function and bioinformaticsNeil Saunders
 
Primary and Secondary Structure of Protein
Primary and Secondary Structure of ProteinPrimary and Secondary Structure of Protein
Primary and Secondary Structure of ProteinCyra Mae Soreda
 

Destacado (20)

Classification and properties of protein
Classification and properties of proteinClassification and properties of protein
Classification and properties of protein
 
Protein Structure & Function
Protein Structure & FunctionProtein Structure & Function
Protein Structure & Function
 
Protein structure
Protein structureProtein structure
Protein structure
 
Secondary Structure Prediction of proteins
Secondary Structure Prediction of proteins Secondary Structure Prediction of proteins
Secondary Structure Prediction of proteins
 
Quaternary structure of protein
Quaternary structure of proteinQuaternary structure of protein
Quaternary structure of protein
 
Protein Structure and Function
Protein Structure and FunctionProtein Structure and Function
Protein Structure and Function
 
Protein structure & function
Protein structure & functionProtein structure & function
Protein structure & function
 
Protein structure prediction with a focus on Rosetta
Protein structure prediction with a focus on RosettaProtein structure prediction with a focus on Rosetta
Protein structure prediction with a focus on Rosetta
 
Nucleic acid structure
Nucleic acid structure Nucleic acid structure
Nucleic acid structure
 
Domains!
Domains!Domains!
Domains!
 
Protein function and bioinformatics
Protein function and bioinformaticsProtein function and bioinformatics
Protein function and bioinformatics
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
protein stability
protein stabilityprotein stability
protein stability
 
Cephalosporins
CephalosporinsCephalosporins
Cephalosporins
 
cephalosporins
cephalosporinscephalosporins
cephalosporins
 
CEPHALOSPORINS
CEPHALOSPORINSCEPHALOSPORINS
CEPHALOSPORINS
 
Protein targeting
Protein targetingProtein targeting
Protein targeting
 
Cell line
Cell lineCell line
Cell line
 
Protein classification
Protein classificationProtein classification
Protein classification
 
Primary and Secondary Structure of Protein
Primary and Secondary Structure of ProteinPrimary and Secondary Structure of Protein
Primary and Secondary Structure of Protein
 

Similar a Protein Structure Levels Explained

structure of proteins
structure of proteinsstructure of proteins
structure of proteinsAtheer Ahmed
 
structure of protins
structure of protins structure of protins
structure of protins Atheer Ahmed
 
Drug design and discovery
Drug design and discoveryDrug design and discovery
Drug design and discoveryShikha Popali
 
Module 1 Lesson 1 of 3-1.pdf
Module 1 Lesson 1 of 3-1.pdfModule 1 Lesson 1 of 3-1.pdf
Module 1 Lesson 1 of 3-1.pdfStutiGupta190190
 
Introduction_to_proteins_and_amino_acids (1).pdf
Introduction_to_proteins_and_amino_acids (1).pdfIntroduction_to_proteins_and_amino_acids (1).pdf
Introduction_to_proteins_and_amino_acids (1).pdfNeelamparwar
 
Proteins structure and role in gene expression
Proteins structure and role in gene expressionProteins structure and role in gene expression
Proteins structure and role in gene expressionAnwar Hussain
 
Proteins structure and role in gene expression
Proteins structure and role in gene expressionProteins structure and role in gene expression
Proteins structure and role in gene expressionAnwar Hussain
 
Structure of proteins and nature of bond linking monomers in a polymer
Structure of proteins and nature of bond linking monomers in a polymerStructure of proteins and nature of bond linking monomers in a polymer
Structure of proteins and nature of bond linking monomers in a polymerHARINATHA REDDY ASWARTHA
 
Amino Acids and Proteins (.pptx
Amino Acids and Proteins (.pptxAmino Acids and Proteins (.pptx
Amino Acids and Proteins (.pptxAbdulkarim803288
 
types of protein (1).pptx
types of protein (1).pptxtypes of protein (1).pptx
types of protein (1).pptxwilliamsharma2
 

Similar a Protein Structure Levels Explained (20)

structure of proteins
structure of proteinsstructure of proteins
structure of proteins
 
structure of protins
structure of protins structure of protins
structure of protins
 
Drug design and discovery
Drug design and discoveryDrug design and discovery
Drug design and discovery
 
Protein Structure
Protein StructureProtein Structure
Protein Structure
 
Protein
ProteinProtein
Protein
 
Protein Structure & Function.pptx
Protein Structure & Function.pptxProtein Structure & Function.pptx
Protein Structure & Function.pptx
 
Protein structure
Protein structure Protein structure
Protein structure
 
Structure of protein
Structure of proteinStructure of protein
Structure of protein
 
Module 1 Lesson 1 of 3-1.pdf
Module 1 Lesson 1 of 3-1.pdfModule 1 Lesson 1 of 3-1.pdf
Module 1 Lesson 1 of 3-1.pdf
 
Introduction_to_proteins_and_amino_acids (1).pdf
Introduction_to_proteins_and_amino_acids (1).pdfIntroduction_to_proteins_and_amino_acids (1).pdf
Introduction_to_proteins_and_amino_acids (1).pdf
 
Quaternary structure of proteins
Quaternary structure of proteinsQuaternary structure of proteins
Quaternary structure of proteins
 
Proteins structure and role in gene expression
Proteins structure and role in gene expressionProteins structure and role in gene expression
Proteins structure and role in gene expression
 
Proteins structure and role in gene expression
Proteins structure and role in gene expressionProteins structure and role in gene expression
Proteins structure and role in gene expression
 
Protein
ProteinProtein
Protein
 
Proteins and Amino acid -: classification , structure,functions, physicochem...
 Proteins and Amino acid -: classification , structure,functions, physicochem... Proteins and Amino acid -: classification , structure,functions, physicochem...
Proteins and Amino acid -: classification , structure,functions, physicochem...
 
Proteins
ProteinsProteins
Proteins
 
Protein
ProteinProtein
Protein
 
Structure of proteins and nature of bond linking monomers in a polymer
Structure of proteins and nature of bond linking monomers in a polymerStructure of proteins and nature of bond linking monomers in a polymer
Structure of proteins and nature of bond linking monomers in a polymer
 
Amino Acids and Proteins (.pptx
Amino Acids and Proteins (.pptxAmino Acids and Proteins (.pptx
Amino Acids and Proteins (.pptx
 
types of protein (1).pptx
types of protein (1).pptxtypes of protein (1).pptx
types of protein (1).pptx
 

Más de damarisb

Transgenic animals
Transgenic animalsTransgenic animals
Transgenic animalsdamarisb
 
in vitro fertilization
in vitro fertilizationin vitro fertilization
in vitro fertilizationdamarisb
 
Animal communication
Animal communicationAnimal communication
Animal communicationdamarisb
 
Origin of life
Origin of lifeOrigin of life
Origin of lifedamarisb
 
Second messenger system
Second messenger systemSecond messenger system
Second messenger systemdamarisb
 
Neurotransmitters
NeurotransmittersNeurotransmitters
Neurotransmittersdamarisb
 
Gene therapy
Gene therapyGene therapy
Gene therapydamarisb
 
Water pollution abatement technology
Water pollution abatement technologyWater pollution abatement technology
Water pollution abatement technologydamarisb
 
Human interferences in ecosystems
Human interferences in ecosystemsHuman interferences in ecosystems
Human interferences in ecosystemsdamarisb
 

Más de damarisb (10)

Transgenic animals
Transgenic animalsTransgenic animals
Transgenic animals
 
in vitro fertilization
in vitro fertilizationin vitro fertilization
in vitro fertilization
 
Animal communication
Animal communicationAnimal communication
Animal communication
 
Sem n tem
Sem n temSem n tem
Sem n tem
 
Origin of life
Origin of lifeOrigin of life
Origin of life
 
Second messenger system
Second messenger systemSecond messenger system
Second messenger system
 
Neurotransmitters
NeurotransmittersNeurotransmitters
Neurotransmitters
 
Gene therapy
Gene therapyGene therapy
Gene therapy
 
Water pollution abatement technology
Water pollution abatement technologyWater pollution abatement technology
Water pollution abatement technology
 
Human interferences in ecosystems
Human interferences in ecosystemsHuman interferences in ecosystems
Human interferences in ecosystems
 

Último

Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 

Último (20)

Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 

Protein Structure Levels Explained

  • 2. • Proteins are an important class of biological macromolecules which are the polymers of amino acids. • Biochemists have distinguished several levels of structural organization of proteins. They are: – Primary structure – Secondary structure – Tertiary structure – Quaternary structure INTRODUCTION
  • 3. PRIMARY STRUCTURE • The primary structure of protein refers to the sequence of amino acids present in the polypeptide chain. • Amino acids are covalently linked by peptide bonds. • Each component amino acid in a polypeptide is called a “residue” or “moiety” • By convention, the 10 structure of a protein starts from the amino- terminal (N) end and ends in the carboxyl-terminal (C) end.
  • 4. IMPORTANCE OF PRIMARY STRUCTURE • To predict 20 and 30 structures from sequence homologies with related proteins. (Structure prediction) • Many genetic diseases result from abnormal amino acid sequences. • To understand the molecular mechanism of action of proteins. • To trace evolutionary paths. • End group analysis – Edman degradation. • Gene sequencing method. METHODS OF AMINO ACID SEQUENCE DETERMINATION
  • 5. SECONDARY STRUCTURE • Localized arrangement of adjacent amino acids formed as the polypeptide chain folds. • It consists of • Linus Pauling proposed some essential features of peptide units and polypeptide backbone. They are: – The amide group is rigid and planar as a result of resonance. So rotation about C-N bond is not feasible. – Rotation can take place only about N- Cα and Cα – C bonds. – Trans configuration is more stable than cis for R grps at Cα • From these conclusions Pauling postulated 2 ordered structures α helix and β sheet α-helix β-pleated sheet β-bends Non repetitive structures Super secondary structures
  • 6. POLYPEPTIDE CHAIN CONFORMATIONS • The only reasonably free movements are rotations around the C α-N bond (measured as ϕ ) and the C α-C bond (measured as Ѱ). • The conformation of the backbone can therefore be described by the torsion angles (also called dihedral angles or rotation angles)
  • 7. Animation showing Phi angle rotation at Psi = 0.
  • 8. Animations showing Psi angle rotation at Phi = 0.
  • 9. • White regions : Sterically disallowed for all amino acids except glycine. • Red regions : allowed regions namely the a-helical and b-sheet conformations. • Yellow areas : outer limit A Ramachandran plot (also known as a Ramachandran diagram or a [φ,ψ] plot), originally developed in 1963 by G. N. Ramachandran. RAMACHANDRAN PLOT
  • 10. • Spiral structure • Tightly packed, coiled polypeptide backbone core. • Side chain extend outwards • Stabilized by H bonding b/w carbonyl oxygen and amide hydrogen. • Amino acids per turn – 3.6 • Pitch is 5.4 A • Alpha helical segments are found in many globular proteins like myoglobins, troponin- C etc. ALPHA HELIX H bonding
  • 11. • Formed when 2 or more polypeptides line up side by side. • Individual polypeptide - β strand • Each β strand is fully extended. • They are stabilized by H bond b/w N-H and carbonyl grps of adjacent chains. BETA PLEATED SHEET 2 types Parallel Anti -Parallel N C N N NC C C
  • 13. EXAMPLES The collagen triple helix. Silk fibroin beta sheet.
  • 14. BETA BENDS • Permits the change of direction of the peptide chain to get a folded structure. • It gives a protein globularity rather than linearity. • H bond stabilizes the beta bend structure. • Proline and Glycine are frequently found in beta turns. • Beta turns often promote the formation of antiparallel beta sheets. • Occur at protein surfaces. • Involve four successive aminoacid residues
  • 15. NON REPETITIVE STRUCTURES • A significant portion of globular protein’s structure may be irregular or unique. • They include coils and loops. • Segments of polypeptide chains whose successive residues do not have similar ϕ and Ѱ values are called coils. • Almost all proteins with more than 60 residues contain one or more loops of 6 to 16 residues, called Ω loops. Space-filling model of an Ω loop
  • 16. SUPER SECONDARY STRUCTURES (MOTIFS) Beta barrelβ-meander motif beta-alpha-beta motif Greek key motif Certain groupings of secondary structural elements are called motifs.
  • 17. TERTIARY STRUCTURE • Tertiary structure is the three- dimensional conformation of a polypeptide. • The common features of protein tertiary structure reveal much about the biological functions of the proteins and their evolutionary origins. • The function of a protein depends on its tertiary structure. If this is disrupted, it loses its activity.
  • 18. DOMAINS • Polypeptide chains containing more than ,200 residues usually fold into two or more globular clusters known as domains. • Fundamental functional and 3 dimensional structure of proteins. • Domains often have a specific function such as the binding of a small molecule. • Many domains are structurally independent units that have the characteristics of small globular proteins. The two-domain protein glyceraldehyde- 3-phosphate dehydrogenase. NAD+
  • 19. INTERACTIONS STABILIZING 30 STRUCTURE • This final shape is determined by a variety of bonding interactions between the "side chains" on the amino acids. • Hydrogen bonds • Ionic Bonds • Disulphide Bridges • Hydrophobic Interactions:
  • 21. DETERMINATION OF TERTIARY STRUCTURE • The known protein structures have come to light through: • X-ray crystallographic studies • Nuclear Magnetic Resonance studies • The atomic coordinates of most of these structures are deposited in a database known as the Protein Data Bank (PDB). • It allows the tertiary structures of a variety of proteins to be analyzed and compared.
  • 22. • The biological function of some molecules is determined by multiple polypeptide chains – multimeric proteins. • Arrangement of polypeptide sub unit is called quaternary structure. • Sub units are held together by non covalent interactions. • Eg: Hemoglobin has the subunit composition a2b2 QUATERNARY STRUCTURE Quaternary structure of hemoglobin.
  • 23. RECENT DEVELOPMENTS • A team of scientists at The Scripps Research Institute and the National Institutes of Health (NIH) has discovered the structure of a protein – dynamin, that pinches off tiny pouches from cell’s outer membranes. • Scientists at the Institute of Structural and Molecular Biology have revealed the structure of a complex protein called FimD that acts as an assembly platform for the pili of cystitis bacteria. • Researchers from the Walter and Eliza Hall Institute have found a structural surprise in a type of protein, Bcl-w ,that encourages cell survival, raising interesting questions about how the proteins function to influence programmed cell death.
  • 24. CONCLUSION • Proteins are extraordinarily complex molecules. Of all the molecules encountered in living organisms, proteins have the most diverse functions. • So a basic understanding of the structure of proteins is necessary to comprehend its role in organisms. • Further researches will provide more insight into the structure of several other proteins in the coming year.
  • 25. REFERENCE • Voet, Donald; Voet Judith. Biochemistry, 3rd edition, John Wiley and sons. • Champe, Pamela.C, Harvey, Richard A, Ferrier Denise R (2005). Lippincott’s Illustrated Reviews: Biochemistry, 3rd edition. Lippincott William and Wilkins. • McKee Trudy, McKee James R (2003), Biochemistry: The molecular basis of life, 3rd edition, McGraw Hill. • http://esciencenews.com/articles/2011/06/01/new.antibiotics.a. step.closer.with.discovery.bacterial.protein.structure • http://www.eurekalert.org/pub_releases/2010-04/sri- srs042610.php • http://www.physorg.com/news/2011-10-cell-survival-protein- reveals.html