SlideShare una empresa de Scribd logo
1 de 17
Descargar para leer sin conexión
Limits and Continuity




Thu Mai, Michelle Wong,
        Tam Vu
What are Limits?
Limits are built upon the concept of infinitesimal.
Instead of evaluating a function at a certain x-value,
limits ask the question, “What value does a function
approaches as its input and a constant becomes
infinitesimally small?” Notice how this question does
not depend upon what f(c) actually is. The notations
for writing a limit as x approaches a constant of the
function f(x) is:


Where c is the constant and L (if it is defined) is the
value that the function approaches.
Evaluating Limits: Direct Substitution
Sometimes, the limit as x approaches c of f(x)
is equal to f(c). If this is the case, just directly
substitute in c for x in the limit expression, as
shown below.
Dividing Out Technique
1. Always start by seeing if the substitution method works.
2. If, when you do so, the new expression obtained is an indeterminate form such as
   0/0… try the dividing out technique!
3. Because both the numerator an denominator are 0, you know they share a similar
   factor.
4. Factor whatever you can in the given function.
5. If there is a matching factor in the numerator and denominator, you can cross thru
   them since they “one out.”
6. With your new, simplified function attempt the substitution method again. Plug
   whatever value x is approaching in for x.
7. The answer you arrive at is the limit.




*Note: You may need to algebraically manipulate the function.
Rationalizing
   Sometimes, you will come across limits with radicals in fractions.
Steps
1. Use direct substitution by plugging in zero for x.
2. If you arrive at an undefined answer (0 in the denominator) see if there are any
      obvious factors you could divide out.
3. If there are none, you can try to rationalize either the numerator or the
      denominator by multiplying the expression with a special form of 1.
4. Simplify the expression. Then evaluate the rewritten limit.

Ex:
Squeeze Theorem
The Squeeze Theorem states that if
   h(x) f(x) g(x), and

then
Special Trig Limits
               (memorize these)
                                         h is angle in radians
                                     area of blue: cos(h)sin(h)/2
                                          area of pink: h/2
                                       area of yellow: tan(h)/2




Since

by the Squeeze Theorem we can say that
Special Trig Limits Continued
Continuity and Discontinuity
A function is continuous in the interval [a,b] if
there does not exist a c in the interval [a,b]
such that:
1) f(c) is undefined, or
2)                       , or 3)
 The following functions are discontinuous b/c they do not fulfill ALL
 the properties of continuity as defined above.
Removable vs Non-removable
           Discontinuities
• A removable discontinuity exists at c if f can be made continuous by
redefining f(c).
• If there is a removable discontinuity at c, the limit as xc exists;
likewise if there is a non-removable discontinuity at c, the limit as xc
does not exist.

                      For this function, there is a removable discontinuity
                      at x=3; f(3) = 4 can simply be redefined as f(3) = 2
                      to make the function continuous. The limit as x3
                      exists.




                      For this function, there is a non-removable
                      discontinuity at x=3; even if f(3) is redefined, the
                      function will never be continuous. The limit as x3
                      does not exist.
Intermediate Value Theorem
The Intermediate Value Theorem states that if
f(x) is continuous in the closed interval [a,b]
and f(a) M f(b), then at least one c exists in
the interval [a,b] such that:

         f(c) = M
When do limits not exist?
If


then…
Vertical Asymptotes
f(x) and g(x) are continuous on an open interval
containing c. if f(c) is not equal to 0 and g(c)= 0
and there’s an open interval with c which g(x) is
not 0 for all values of x that are not c, then…..




There is an asymptote at x = c
for
Properties of Limits
 Let b and c be real numbers, n be a positive integer, f and g be functions
                        with the following limits.




Sum or Difference                        Quotient

Scalar Multiple                          Power

Product
Limits Substitution
With limits substitution (informally named so
by yours truly), if

then



This is useful for evaluating limits such as:
How Do Limits Relate to
          Derivatives?
What is a derivative?
• The derivative of a function is defined as that function’s INSTANT rate of change.

Applying Prior Knowledge:
• As learned in pre-algebra, the rate of change of a function is defined by: Δy
                                                                             Δx
Apply Knowledge of Limits:
• Consider that a limit describes the behavior of a function as x gets closer and
closer to a point on a function from both left and right.
• Δy describes a function’s rate of change. To find the function’s INSTANT rate of
  Δx       change, we can use limits.
• We can take:
                         lim Δy
                        Δx 0 Δx

          WHY? As the change in x gets closer and closer to 0, we can more
accurately predict the function’s INSTANT rate of change, and thus the function’s
derivative.
How Do Limits Relate to
      Derivatives?
                   Δy                     y –y
     Consider that Δx can be rewritten as 2Δx 1 .

           (x+ Δx, f(x+ Δx))    Analyze the graph. Notice that the change
        (x, f(x))               in y between any two points on a function is
                                f(x+ Δx) – f(x). Thus:
                                               Δy = y2 – y1 = f(x+ Δx) – f(x)
                                               Δx      Δx           Δx

So lim Δy can be rewritten as lim         f(x+ Δx) – f(x) .
  Δx 0 Δx                   Δx0               Δx


          Therefore, the derivative of f(x) at x is given by:

                               lim     f(x+ Δx) – f(x)
                               Δx 0         Δx

Más contenido relacionado

La actualidad más candente

Derivatives and their Applications
Derivatives and their ApplicationsDerivatives and their Applications
Derivatives and their Applicationsusmancp2611
 
Different types of functions
Different types of functionsDifferent types of functions
Different types of functionsKatrina Young
 
Lesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsLesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsMatthew Leingang
 
Definite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite IntegralDefinite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite IntegralShaifulIslam56
 
Limit of Function And Its Types
Limit of Function And Its TypesLimit of Function And Its Types
Limit of Function And Its TypesAdeel Rasheed
 
Indeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital RuleIndeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital RuleAakash Singh
 
application of partial differentiation
application of partial differentiationapplication of partial differentiation
application of partial differentiationeteaching
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Matthew Leingang
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functionsNjabulo Nkabinde
 
Application of integral calculus
Application of integral calculusApplication of integral calculus
Application of integral calculusHabibur Rahman
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability Seyid Kadher
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesJuan Miguel Palero
 
The Application of Derivatives
The Application of DerivativesThe Application of Derivatives
The Application of Derivativesdivaprincess09
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite IntegralMatthew Leingang
 
Integration and its basic rules and function.
Integration and its basic rules and function.Integration and its basic rules and function.
Integration and its basic rules and function.Kartikey Rohila
 
Rational functions
Rational functionsRational functions
Rational functions20kat06tha
 

La actualidad más candente (20)

Derivatives and their Applications
Derivatives and their ApplicationsDerivatives and their Applications
Derivatives and their Applications
 
Different types of functions
Different types of functionsDifferent types of functions
Different types of functions
 
Lesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsLesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit Laws
 
Definite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite IntegralDefinite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite Integral
 
Limit of Function And Its Types
Limit of Function And Its TypesLimit of Function And Its Types
Limit of Function And Its Types
 
Indeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital RuleIndeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital Rule
 
application of partial differentiation
application of partial differentiationapplication of partial differentiation
application of partial differentiation
 
Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functions
 
Application of integral calculus
Application of integral calculusApplication of integral calculus
Application of integral calculus
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
 
Random Variable
Random VariableRandom Variable
Random Variable
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation Rules
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 
The Application of Derivatives
The Application of DerivativesThe Application of Derivatives
The Application of Derivatives
 
Continuity
ContinuityContinuity
Continuity
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite Integral
 
Integration and its basic rules and function.
Integration and its basic rules and function.Integration and its basic rules and function.
Integration and its basic rules and function.
 
Rational functions
Rational functionsRational functions
Rational functions
 

Destacado (6)

Basic calculus (i)
Basic calculus (i)Basic calculus (i)
Basic calculus (i)
 
Generalization
GeneralizationGeneralization
Generalization
 
Limits and their applications
Limits and their applicationsLimits and their applications
Limits and their applications
 
Pre calculus Grade 11 Learner's Module Senior High School
Pre calculus Grade 11 Learner's Module Senior High SchoolPre calculus Grade 11 Learner's Module Senior High School
Pre calculus Grade 11 Learner's Module Senior High School
 
Basic calculus
Basic calculusBasic calculus
Basic calculus
 
Sketchnoting: 10 Tips to get Started
Sketchnoting: 10 Tips to get StartedSketchnoting: 10 Tips to get Started
Sketchnoting: 10 Tips to get Started
 

Similar a Limits and continuity powerpoint

Tutorfly Review Session Math 31A
Tutorfly Review Session Math 31ATutorfly Review Session Math 31A
Tutorfly Review Session Math 31AEge Tanboga
 
31A WePrep Presentation
31A WePrep Presentation31A WePrep Presentation
31A WePrep PresentationEge Tanboga
 
Project in Calcu
Project in CalcuProject in Calcu
Project in Calcupatrickpaz
 
Limits And Derivative slayerix
Limits And Derivative slayerixLimits And Derivative slayerix
Limits And Derivative slayerixAshams kurian
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And DerivativeAshams kurian
 
Limit 140929031133-phpapp01
Limit 140929031133-phpapp01Limit 140929031133-phpapp01
Limit 140929031133-phpapp01rakambantah
 
_lecture_04_limits_partial_derivatives.pdf
_lecture_04_limits_partial_derivatives.pdf_lecture_04_limits_partial_derivatives.pdf
_lecture_04_limits_partial_derivatives.pdfLeoIrsi
 
CALCULUS chapter number one presentation
CALCULUS chapter number one presentationCALCULUS chapter number one presentation
CALCULUS chapter number one presentationkdoha825
 
CHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdfCHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdfmekkimekki5
 
Limits and continuity[1]
Limits and continuity[1]Limits and continuity[1]
Limits and continuity[1]indu thakur
 
MVT mean value theorem نظرية القيمة المتوسطة
MVT mean value theorem نظرية القيمة المتوسطةMVT mean value theorem نظرية القيمة المتوسطة
MVT mean value theorem نظرية القيمة المتوسطةDr. Karrar Alwash
 
__limite functions.sect22-24
  __limite functions.sect22-24  __limite functions.sect22-24
__limite functions.sect22-24argonaut2
 

Similar a Limits and continuity powerpoint (20)

Lecture co3 math21-1
Lecture co3 math21-1Lecture co3 math21-1
Lecture co3 math21-1
 
Tutorfly Review Session Math 31A
Tutorfly Review Session Math 31ATutorfly Review Session Math 31A
Tutorfly Review Session Math 31A
 
31A WePrep Presentation
31A WePrep Presentation31A WePrep Presentation
31A WePrep Presentation
 
Project in Calcu
Project in CalcuProject in Calcu
Project in Calcu
 
Limits BY ATC
Limits BY ATCLimits BY ATC
Limits BY ATC
 
Limits BY ATC
Limits BY ATCLimits BY ATC
Limits BY ATC
 
R lecture co4_math 21-1
R lecture co4_math 21-1R lecture co4_math 21-1
R lecture co4_math 21-1
 
Limits And Derivative slayerix
Limits And Derivative slayerixLimits And Derivative slayerix
Limits And Derivative slayerix
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And Derivative
 
Lemh105
Lemh105Lemh105
Lemh105
 
Limit 140929031133-phpapp01
Limit 140929031133-phpapp01Limit 140929031133-phpapp01
Limit 140929031133-phpapp01
 
_lecture_04_limits_partial_derivatives.pdf
_lecture_04_limits_partial_derivatives.pdf_lecture_04_limits_partial_derivatives.pdf
_lecture_04_limits_partial_derivatives.pdf
 
CALCULUS chapter number one presentation
CALCULUS chapter number one presentationCALCULUS chapter number one presentation
CALCULUS chapter number one presentation
 
CHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdfCHAP6 Limits and Continuity.pdf
CHAP6 Limits and Continuity.pdf
 
Limits and continuity[1]
Limits and continuity[1]Limits and continuity[1]
Limits and continuity[1]
 
Derivative rules.docx
Derivative rules.docxDerivative rules.docx
Derivative rules.docx
 
Section 1-5
Section 1-5Section 1-5
Section 1-5
 
MVT mean value theorem نظرية القيمة المتوسطة
MVT mean value theorem نظرية القيمة المتوسطةMVT mean value theorem نظرية القيمة المتوسطة
MVT mean value theorem نظرية القيمة المتوسطة
 
__limite functions.sect22-24
  __limite functions.sect22-24  __limite functions.sect22-24
__limite functions.sect22-24
 
Application of Derivatives
Application of DerivativesApplication of Derivatives
Application of Derivatives
 

Más de canalculus

Teaching resume
Teaching resumeTeaching resume
Teaching resumecanalculus
 
Teaching resume
Teaching resumeTeaching resume
Teaching resumecanalculus
 
Open house calc
Open house calcOpen house calc
Open house calccanalculus
 
Open house geo
Open house geoOpen house geo
Open house geocanalculus
 
Summer Packet Answers
Summer Packet AnswersSummer Packet Answers
Summer Packet Answerscanalculus
 
Geometry summer packet instructions
Geometry summer packet instructionsGeometry summer packet instructions
Geometry summer packet instructionscanalculus
 
Geometry summer packet instructions
Geometry summer packet instructionsGeometry summer packet instructions
Geometry summer packet instructionscanalculus
 
Serving the gifted student
Serving the gifted studentServing the gifted student
Serving the gifted studentcanalculus
 
Varsity girls 2012 district 21 brackets
Varsity girls 2012 district 21 bracketsVarsity girls 2012 district 21 brackets
Varsity girls 2012 district 21 bracketscanalculus
 
Jv boys 2012 district 21 brackets
Jv boys 2012 district 21 bracketsJv boys 2012 district 21 brackets
Jv boys 2012 district 21 bracketscanalculus
 
Varsity boys 2012 district 21 brackets
Varsity boys 2012 district 21 bracketsVarsity boys 2012 district 21 brackets
Varsity boys 2012 district 21 bracketscanalculus
 
AB practice test
AB practice testAB practice test
AB practice testcanalculus
 
A lg 2 fall final 2011 review
A lg 2 fall final 2011 reviewA lg 2 fall final 2011 review
A lg 2 fall final 2011 reviewcanalculus
 
3rd six wks sfa review 2011
3rd six wks sfa review 20113rd six wks sfa review 2011
3rd six wks sfa review 2011canalculus
 
Calculus bc 3rd sw sfa review answer key 2011
Calculus bc 3rd sw sfa review answer key 2011Calculus bc 3rd sw sfa review answer key 2011
Calculus bc 3rd sw sfa review answer key 2011canalculus
 
Deriv calculus!
Deriv calculus!Deriv calculus!
Deriv calculus!canalculus
 

Más de canalculus (20)

Teaching resume
Teaching resumeTeaching resume
Teaching resume
 
Teaching resume
Teaching resumeTeaching resume
Teaching resume
 
2nd 1group
2nd 1group2nd 1group
2nd 1group
 
Open house calc
Open house calcOpen house calc
Open house calc
 
Open house geo
Open house geoOpen house geo
Open house geo
 
Georeview1 1
Georeview1 1Georeview1 1
Georeview1 1
 
1st 2practice
1st 2practice1st 2practice
1st 2practice
 
1st 1
1st 11st 1
1st 1
 
Summer Packet Answers
Summer Packet AnswersSummer Packet Answers
Summer Packet Answers
 
Geometry summer packet instructions
Geometry summer packet instructionsGeometry summer packet instructions
Geometry summer packet instructions
 
Geometry summer packet instructions
Geometry summer packet instructionsGeometry summer packet instructions
Geometry summer packet instructions
 
Serving the gifted student
Serving the gifted studentServing the gifted student
Serving the gifted student
 
Varsity girls 2012 district 21 brackets
Varsity girls 2012 district 21 bracketsVarsity girls 2012 district 21 brackets
Varsity girls 2012 district 21 brackets
 
Jv boys 2012 district 21 brackets
Jv boys 2012 district 21 bracketsJv boys 2012 district 21 brackets
Jv boys 2012 district 21 brackets
 
Varsity boys 2012 district 21 brackets
Varsity boys 2012 district 21 bracketsVarsity boys 2012 district 21 brackets
Varsity boys 2012 district 21 brackets
 
AB practice test
AB practice testAB practice test
AB practice test
 
A lg 2 fall final 2011 review
A lg 2 fall final 2011 reviewA lg 2 fall final 2011 review
A lg 2 fall final 2011 review
 
3rd six wks sfa review 2011
3rd six wks sfa review 20113rd six wks sfa review 2011
3rd six wks sfa review 2011
 
Calculus bc 3rd sw sfa review answer key 2011
Calculus bc 3rd sw sfa review answer key 2011Calculus bc 3rd sw sfa review answer key 2011
Calculus bc 3rd sw sfa review answer key 2011
 
Deriv calculus!
Deriv calculus!Deriv calculus!
Deriv calculus!
 

Último

Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationKnoldus Inc.
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch TuesdayIvanti
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...itnewsafrica
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...Karmanjay Verma
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfpanagenda
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFMichael Gough
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Hiroshi SHIBATA
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 
Landscape Catalogue 2024 Australia-1.pdf
Landscape Catalogue 2024 Australia-1.pdfLandscape Catalogue 2024 Australia-1.pdf
Landscape Catalogue 2024 Australia-1.pdfAarwolf Industries LLC
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxfnnc6jmgwh
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...Wes McKinney
 
Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Karmanjay Verma
 
A Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxA Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxAna-Maria Mihalceanu
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPathCommunity
 
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Mark Simos
 

Último (20)

Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog Presentation
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch Tuesday
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDF
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 
Landscape Catalogue 2024 Australia-1.pdf
Landscape Catalogue 2024 Australia-1.pdfLandscape Catalogue 2024 Australia-1.pdf
Landscape Catalogue 2024 Australia-1.pdf
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
 
Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#
 
A Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxA Glance At The Java Performance Toolbox
A Glance At The Java Performance Toolbox
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to Hero
 
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
 

Limits and continuity powerpoint

  • 1. Limits and Continuity Thu Mai, Michelle Wong, Tam Vu
  • 2. What are Limits? Limits are built upon the concept of infinitesimal. Instead of evaluating a function at a certain x-value, limits ask the question, “What value does a function approaches as its input and a constant becomes infinitesimally small?” Notice how this question does not depend upon what f(c) actually is. The notations for writing a limit as x approaches a constant of the function f(x) is: Where c is the constant and L (if it is defined) is the value that the function approaches.
  • 3. Evaluating Limits: Direct Substitution Sometimes, the limit as x approaches c of f(x) is equal to f(c). If this is the case, just directly substitute in c for x in the limit expression, as shown below.
  • 4. Dividing Out Technique 1. Always start by seeing if the substitution method works. 2. If, when you do so, the new expression obtained is an indeterminate form such as 0/0… try the dividing out technique! 3. Because both the numerator an denominator are 0, you know they share a similar factor. 4. Factor whatever you can in the given function. 5. If there is a matching factor in the numerator and denominator, you can cross thru them since they “one out.” 6. With your new, simplified function attempt the substitution method again. Plug whatever value x is approaching in for x. 7. The answer you arrive at is the limit. *Note: You may need to algebraically manipulate the function.
  • 5. Rationalizing Sometimes, you will come across limits with radicals in fractions. Steps 1. Use direct substitution by plugging in zero for x. 2. If you arrive at an undefined answer (0 in the denominator) see if there are any obvious factors you could divide out. 3. If there are none, you can try to rationalize either the numerator or the denominator by multiplying the expression with a special form of 1. 4. Simplify the expression. Then evaluate the rewritten limit. Ex:
  • 6. Squeeze Theorem The Squeeze Theorem states that if h(x) f(x) g(x), and then
  • 7. Special Trig Limits (memorize these) h is angle in radians area of blue: cos(h)sin(h)/2 area of pink: h/2 area of yellow: tan(h)/2 Since by the Squeeze Theorem we can say that
  • 9. Continuity and Discontinuity A function is continuous in the interval [a,b] if there does not exist a c in the interval [a,b] such that: 1) f(c) is undefined, or 2) , or 3) The following functions are discontinuous b/c they do not fulfill ALL the properties of continuity as defined above.
  • 10. Removable vs Non-removable Discontinuities • A removable discontinuity exists at c if f can be made continuous by redefining f(c). • If there is a removable discontinuity at c, the limit as xc exists; likewise if there is a non-removable discontinuity at c, the limit as xc does not exist. For this function, there is a removable discontinuity at x=3; f(3) = 4 can simply be redefined as f(3) = 2 to make the function continuous. The limit as x3 exists. For this function, there is a non-removable discontinuity at x=3; even if f(3) is redefined, the function will never be continuous. The limit as x3 does not exist.
  • 11. Intermediate Value Theorem The Intermediate Value Theorem states that if f(x) is continuous in the closed interval [a,b] and f(a) M f(b), then at least one c exists in the interval [a,b] such that: f(c) = M
  • 12. When do limits not exist? If then…
  • 13. Vertical Asymptotes f(x) and g(x) are continuous on an open interval containing c. if f(c) is not equal to 0 and g(c)= 0 and there’s an open interval with c which g(x) is not 0 for all values of x that are not c, then….. There is an asymptote at x = c for
  • 14. Properties of Limits Let b and c be real numbers, n be a positive integer, f and g be functions with the following limits. Sum or Difference Quotient Scalar Multiple Power Product
  • 15. Limits Substitution With limits substitution (informally named so by yours truly), if then This is useful for evaluating limits such as:
  • 16. How Do Limits Relate to Derivatives? What is a derivative? • The derivative of a function is defined as that function’s INSTANT rate of change. Applying Prior Knowledge: • As learned in pre-algebra, the rate of change of a function is defined by: Δy Δx Apply Knowledge of Limits: • Consider that a limit describes the behavior of a function as x gets closer and closer to a point on a function from both left and right. • Δy describes a function’s rate of change. To find the function’s INSTANT rate of Δx change, we can use limits. • We can take: lim Δy Δx 0 Δx WHY? As the change in x gets closer and closer to 0, we can more accurately predict the function’s INSTANT rate of change, and thus the function’s derivative.
  • 17. How Do Limits Relate to Derivatives? Δy y –y Consider that Δx can be rewritten as 2Δx 1 . (x+ Δx, f(x+ Δx)) Analyze the graph. Notice that the change (x, f(x)) in y between any two points on a function is f(x+ Δx) – f(x). Thus: Δy = y2 – y1 = f(x+ Δx) – f(x) Δx Δx Δx So lim Δy can be rewritten as lim f(x+ Δx) – f(x) . Δx 0 Δx Δx0 Δx Therefore, the derivative of f(x) at x is given by: lim f(x+ Δx) – f(x) Δx 0 Δx