SlideShare una empresa de Scribd logo
1 de 22
O C C U P A N T
P R O T E C T I O N
D E S I G N
P A R A M E T E R S I N
S L E D T E S T I N G
P R O J E C T - 2
M A D E BY :
A K S H AY M I S T R I
1
CONTENTS
• Objectives
• Injury Criteria to observe
• Effects of individual parameters:
– Sensor Timing (Slide 5 - 7)
– Retractor Load Limiter (Slide 8 - 10)
– Airbag Mass-Flow rate (Slide 11 - 14)
– Sled Pulse (Slide 15 - 17)
• Final Model (18 – 21)
• Conclusion
Note: Underlined words contain link to go to their respective slides.
2
OBJECTIVES
• Test conditions: Belted 50% Hybrid III dummy in driver seat subjected to 35 mph
impact.
• Design parameters to observe:
– Sensor timing (-5 ms /+5 ms)
– Retractor Load Limiter: Seatbelt load (Scaling: 0.8/1.2)
– Airbag mass flow rate (Scaling: 0.8/1.2)
– Sled pulse (Scaling: 0.8/1.2)
3
INJURY CRITERIA TO OBSERVE
Criteria Threshold
Head Injury Criteria (HIC15) 700
Chest Displacement [mm] 63
Chest Acceleration [g] 60
Left Femur Load [kN] 10
Right Femur Load [kN] 10
4
EFFECT OF SENSOR TIMING
5
Injury Criteria Baseline (@13ms) Timing -5ms (@8ms) Timing +5ms (@18ms)
HIC15 722 655 784
Chest Acceleration [g] 109.3 122 132.8
Chest Deflection [mm] 58.44 59 58.3
Left Femur Load [kN] 29.5 27.1 32.6
Right Femur Load [kN] 31.3 29.5 34.2
• Green and Red colors show decrement and increment in the injury values respectively.
• Here, pretensioner sensor fire timings were varied.
• Early action of pretensioner reduces the dummy travel and hence HIC and femur loads are
reduced.
• However, due to early action chest deflection increases.
• Chest acceleration worsens in both cases.
6
EFFECT OF SENSOR TIMING
0
20
40
60
80
100
120
140
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
Chest Acceleration -5 ms +5 ms
0
10.5
21
31.5
42
52.5
63
0 15 30 45 60 75 90 105 120 135 150
Deflection[mm]
Time [ms]
Chest Deflection -5 ms +5 ms
0
50
100
150
200
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
HIC 15 -5 ms +5 ms
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Left Femur -5 ms +5 ms
-40
-20
0
20
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Right Femur -5 ms +5 ms
7
EFFECT OF SENSOR TIMING
• Time -5ms (@8 ms) • Time +5ms (@18 ms)
EFFECT OF RETRACTOR LOAD LIMITER
8
Baseline - SF 1
(@3.25 kN)
Scale Factor - SF 0.9
(@2.93 kN)
Scale Factor - SF 1.2
(@3.9 kN)
HIC15 722 760 742
Chest Acceleration [g] 109.3 127.9 128.8
Chest Deflection [mm] 58.44 64.3 65.6
Left Femur Load [kN] 29.5 29.1 29.3
Right Femur Load [kN] 31.3 31.8 31.4
• Increasing and decreasing the retractor load limit, demotes the injury values.
• More dummy travel is the reason in case of increasing the load limit. (Late action of
retractor)
• When limit is decreased, retractor acts early but makes the belt stiff for the occupant
which increases the injury values.
• Femur loads almost don’t vary for both cases.
9
EFFECT OF RETRACTOR LOAD LIMITER
0
20
40
60
80
100
120
140
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
Chest Acceleration SF : 0.9 SF : 1.2
0
10
20
30
40
50
60
70
0 15 30 45 60 75 90 105 120 135 150
Deflection[mm]
Time [ms]
Chest Deflection SF : 0.9 SF : 1.2
0
50
100
150
200
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
HIC 15 SF : 0.9 SF : 1.2
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Left Femur SF : 0.9 SF : 1.2
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Right Femur SF : 0.9 SF : 1.2
10
EFFECT OF RETRACTOR LOAD LIMITER
• SF: 0.9 (2.9 kN) • SF: 1.2 (3.9 kN)
EFFECT OF AIRBAG MASS-FLOW RATE
• VSCA: Volume Scale Factor and PSCA: Pressure Scale Factor.
• Decreasing the volume factor increases the injury values, as the dummy travel increases.
Accelerations and chest deflections increase.
• Best results are found when VSCA is increased and PSCA is decreased. Increase in volume
reduces the dummy travel and decrease in pressure reduces the stiffness of the bag which
is a bit desirable.
• Worst case is observed when VSCA and PSCA both are increased, in this case the airbag
becomes the cause of injury to the occupant.
11
Baseline -
VSCA:1 PSCA:1
Timing - VSCA: 0.8
PSCA: 0.8
Timing - VSCA:
1.2 PSCA:1.2
Timing - VSCA:
0.8 PSCA:1.2
Timing - VSCA:
1.2 PSCA:0.8
HIC15 722 780 749 749 743
Chest Acceleration [g] 109.3 126 125.8 126.5 125.4
Chest Deflection [mm] 58.44 59.4 57 62.4 55
Left Femur Load [kN] 29.5 29.4 45.4 29.6 29.5
Right Femur Load [kN] 31.3 31.3 47.7 31.5 32
12
EFFECT OF AIRBAG MASS-FLOW RATE
0
20
40
60
80
100
120
140
0 15 30 45 60 75 90 105 120 135 150
ChestAcceleration[g]
Time [ms]
Chest Acceleration VSCA, PSCA: 0.8 VSCA, PSCA: 1.2
0
10
20
30
40
50
60
70
0 15 30 45 60 75 90 105 120 135 150
ChestDeflection[mm]
Time [ms]
Chest Deflection VSCA, PSCA: 0.8 VSCA, PSCA: 1.2
0
50
100
150
200
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
HIC15 VSCA, PSCA: 0.8 VSCA, PSCA: 1.2
-50
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Left Femur VSCA, PSCA: 0.8 VSCA, PSCA: 1.2
-60
-40
-20
0
20
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Right Femur VSCA, PSCA: 0.8 VSCA, PSCA: 1.2
13
EFFECT OF AIRBAG MASS-FLOW RATE
0
20
40
60
80
100
120
140
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
Chest Acceleration VSCA: 1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2
0
10
20
30
40
50
60
70
0 15 30 45 60 75 90 105 120 135 150
Deflection[mm]
Time [ms]
Chest Deflection VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2
0
50
100
150
200
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
HIC15 VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Left Femur VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Right Femur VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2
14
EFFECT OF AIRBAG MASS-FLOW RATE
• VSCA:0.8 PSCA:0.8 • VSCA:1.2 PSCA:1.2
• VSCA:0.8 PSCA:1.2 • VSCA:1.2 PSCA:0.8
EFFECT OF SLED PULSE
15
Baseline - SF:1 Scale Factor - SF 0.9 Scale Factor - SF 1.2
HIC15 722 521 1103
Chest Acceleration [g] 109.3 111 147.8
Chest Deflection [mm] 58.44 58.14 58.4
Left Femur Load [kN] 29.5 25.8 35.4
Right Femur Load [kN] 31.3 29.6 35.7
• Decreasing the sled pulse, obviously, decreased the injury values.
• Injury values highly increased with the increase of sled pulse.
16
0
20
40
60
80
100
120
140
160
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
Chest Acceleration SF: 0.9 SF: 1.2
EFFECT OF SLED PULSE
0
10
20
30
40
50
60
70
0 15 30 45 60 75 90 105 120 135 150
ChestDeflection[mm]
Time [ms]
Chest Deflection SF : 0.9 SF : 1.2
0
40
80
120
160
200
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
HIC15
SF : 0.9 SF: 1.2
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Left Femur SF: 0.9 SF: 1.2
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Right Femur SF: 0.9 SF: 1.2
17
EFFECT OF SLED PULSE
• SF:
0.9
• SF:
1.2
FINAL MODEL
• A knee airbag is recommended to reduce femur loads, is added to the final model.
18
Baseline model Final model
Sled Pulse Scale Factor 1 0.95
Pretensioner Sensor timing [ms] 13 10
Knee Airbag VSCA, PSCA NA 0.3, 0.3
Airbag VSCA, PSCA 1, 1 1.2, 0.9
Knee Airbag
19
FINAL MODEL
Injury Criteria Threshold Values Baseline Final Model
HIC15 700 722 613
Chest Acceleration [g] 60 109.3 52
Chest Deflection [mm] 63 58.44 57.9
Left Femur Load [kN] 10 29.5 13
Right Femur Load [kN] 10 31.3 11.6
• Knee airbag added to the model highly decreases the femur loads.
• Slight reduction in sled pulse helps to control the injury values, specially the HIC.
• While the combined effect of early action seatbelt pretensioner sensor time and airbag
flow scale factors (slightly high VSCA and slightly low PSCA), helps in controlling of HIC
and Chest injury values.
20
FINAL MODEL
0
20
40
60
80
100
120
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
Chest Acceleration Baseline Final Model
0
10.5
21
31.5
42
52.5
63
0 15 30 45 60 75 90 105 120 135 150
Deflection[mm]
Time [ms]
Chest Deflection Baseline Final Model
0
50
100
150
200
0 15 30 45 60 75 90 105 120 135 150
Acceleration[g]
Time [ms]
HIC15 Baseline Final Model
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Left Femur Baseline Final Model
-40
-30
-20
-10
0
10
0 15 30 45 60 75 90 105 120 135 150
Force[kN]
Time [ms]
Right Femur Baseline Final Model
21
FINAL MODEL
• Final Model• Baseline
CONCLUSION
• Airbag:
– High pressure in airbag can be a cause of injury. Similar will be the effect for low volume.
– High volume and slightly low pressure is the optimum case. High volume reduces the
dummy travel and slightly low pressure will not make the bag very stiff.
• Seatbelt:
– Early action of pretensioner was seen favorable, reducing the slack proved beneficial.
– Making the seatbelt very stiff (retractor force), are the reasons for high chest injuries.
• Sled Pulse:
– Reduction in sled pulse, decreased the injury values.
– However, this should not be reduced highly, since it will not reproduce the exact crash
impact scenario which could occur in real life.
– Slight reduction in sled pulse is justified, since it could be reduced by improving the
structure of the vehicle which could be made to absorb more energy.
22

Más contenido relacionado

Similar a Effects of Occupant Protection Design Parameters in Sled Testing

Volvo ec55 c compact excavator service repair manual
Volvo ec55 c compact excavator service repair manualVolvo ec55 c compact excavator service repair manual
Volvo ec55 c compact excavator service repair manualfujsekfkksemm
 
Volvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdfVolvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdfttf99929781
 
Volvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdfVolvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdffujsjekmd8udidj
 
Volvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdfVolvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdfufjskedkdm8ud
 
Volvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdfVolvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdffusekdmd8uj
 
Volvo EC55C Compact Excavator Service Repair Manual
Volvo EC55C Compact Excavator Service Repair ManualVolvo EC55C Compact Excavator Service Repair Manual
Volvo EC55C Compact Excavator Service Repair Manualuejjdksemme
 
Volvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdfVolvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdffujsjkdmdm3e4
 
096000 352# pump test specification (plano de teste denso)
096000 352# pump test specification (plano de teste denso)096000 352# pump test specification (plano de teste denso)
096000 352# pump test specification (plano de teste denso)Junior Iung
 
SAM_METHOD 1 _Training Presentation .pptx.pdf
SAM_METHOD 1 _Training Presentation .pptx.pdfSAM_METHOD 1 _Training Presentation .pptx.pdf
SAM_METHOD 1 _Training Presentation .pptx.pdfhasansyeadbuft
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfbin971209zhou
 
Volvo EC55B Compact Excavator Service Repair Manual
Volvo EC55B Compact Excavator Service Repair ManualVolvo EC55B Compact Excavator Service Repair Manual
Volvo EC55B Compact Excavator Service Repair Manualfujdfjjskrtekme
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdffujsekddmdmdm
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdffyhsejkdm8u
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfttf99929781
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdff8usejkdmdd8i
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdffjskemdmmded
 

Similar a Effects of Occupant Protection Design Parameters in Sled Testing (16)

Volvo ec55 c compact excavator service repair manual
Volvo ec55 c compact excavator service repair manualVolvo ec55 c compact excavator service repair manual
Volvo ec55 c compact excavator service repair manual
 
Volvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdfVolvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdf
 
Volvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdfVolvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdf
 
Volvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdfVolvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdf
 
Volvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdfVolvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdf
 
Volvo EC55C Compact Excavator Service Repair Manual
Volvo EC55C Compact Excavator Service Repair ManualVolvo EC55C Compact Excavator Service Repair Manual
Volvo EC55C Compact Excavator Service Repair Manual
 
Volvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdfVolvo EC55C Compact Excavator Service Repair Manual.pdf
Volvo EC55C Compact Excavator Service Repair Manual.pdf
 
096000 352# pump test specification (plano de teste denso)
096000 352# pump test specification (plano de teste denso)096000 352# pump test specification (plano de teste denso)
096000 352# pump test specification (plano de teste denso)
 
SAM_METHOD 1 _Training Presentation .pptx.pdf
SAM_METHOD 1 _Training Presentation .pptx.pdfSAM_METHOD 1 _Training Presentation .pptx.pdf
SAM_METHOD 1 _Training Presentation .pptx.pdf
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 
Volvo EC55B Compact Excavator Service Repair Manual
Volvo EC55B Compact Excavator Service Repair ManualVolvo EC55B Compact Excavator Service Repair Manual
Volvo EC55B Compact Excavator Service Repair Manual
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
 

Más de Akshay Mistri

Understanding optistruct & LS-Dyna files using text editor
Understanding optistruct & LS-Dyna files using text editorUnderstanding optistruct & LS-Dyna files using text editor
Understanding optistruct & LS-Dyna files using text editorAkshay Mistri
 
Everything About Seat-belts
Everything About Seat-beltsEverything About Seat-belts
Everything About Seat-beltsAkshay Mistri
 
Mechanical Joints in LS-Dyna for Explicit Analysis
Mechanical Joints in LS-Dyna for Explicit AnalysisMechanical Joints in LS-Dyna for Explicit Analysis
Mechanical Joints in LS-Dyna for Explicit AnalysisAkshay Mistri
 
Automation in Hypermesh
Automation in HypermeshAutomation in Hypermesh
Automation in HypermeshAkshay Mistri
 
HIII Headform Calibration Test
HIII Headform Calibration TestHIII Headform Calibration Test
HIII Headform Calibration TestAkshay Mistri
 
Structural Analysis of Toyota RAV4 and its Convertible version
Structural Analysis of Toyota RAV4 and its Convertible versionStructural Analysis of Toyota RAV4 and its Convertible version
Structural Analysis of Toyota RAV4 and its Convertible versionAkshay Mistri
 
Global Human Body Model Consortium (GHBMC) Head Model Validation
Global Human Body Model Consortium (GHBMC) Head Model ValidationGlobal Human Body Model Consortium (GHBMC) Head Model Validation
Global Human Body Model Consortium (GHBMC) Head Model ValidationAkshay Mistri
 
Setting up a crash simulation in LS-Dyna
Setting up a crash simulation in LS-DynaSetting up a crash simulation in LS-Dyna
Setting up a crash simulation in LS-DynaAkshay Mistri
 
Thermal Analysis in Hypermesh (Conduction, Convention and Thermal Expansion)
Thermal Analysis in Hypermesh (Conduction, Convention and Thermal Expansion)Thermal Analysis in Hypermesh (Conduction, Convention and Thermal Expansion)
Thermal Analysis in Hypermesh (Conduction, Convention and Thermal Expansion)Akshay Mistri
 
Buckling Frequencies for Beams in Hypermesh
Buckling Frequencies for Beams in HypermeshBuckling Frequencies for Beams in Hypermesh
Buckling Frequencies for Beams in HypermeshAkshay Mistri
 
Truss Analysis (Mechanics vs. Hypermesh)
Truss Analysis (Mechanics vs. Hypermesh)Truss Analysis (Mechanics vs. Hypermesh)
Truss Analysis (Mechanics vs. Hypermesh)Akshay Mistri
 
Solar Powered Field Utility Vehicle
Solar Powered Field Utility VehicleSolar Powered Field Utility Vehicle
Solar Powered Field Utility VehicleAkshay Mistri
 
Natural Frequencies and Mode shape vectors for 10 Mass-Spring system
Natural Frequencies and Mode shape vectors for 10 Mass-Spring systemNatural Frequencies and Mode shape vectors for 10 Mass-Spring system
Natural Frequencies and Mode shape vectors for 10 Mass-Spring systemAkshay Mistri
 
Modelling Planar Vehicle Dynamics using Bicycle Model
Modelling Planar Vehicle Dynamics using Bicycle ModelModelling Planar Vehicle Dynamics using Bicycle Model
Modelling Planar Vehicle Dynamics using Bicycle ModelAkshay Mistri
 
Analysing simple pendulum using matlab
Analysing simple pendulum using matlabAnalysing simple pendulum using matlab
Analysing simple pendulum using matlabAkshay Mistri
 
PPT.3 Starting with hypermesh – Static Load Application and Analysis
PPT.3 Starting with hypermesh – Static Load Application and AnalysisPPT.3 Starting with hypermesh – Static Load Application and Analysis
PPT.3 Starting with hypermesh – Static Load Application and AnalysisAkshay Mistri
 
PPT-2 Starting with hypermesh - Meshing
PPT-2 Starting with hypermesh - MeshingPPT-2 Starting with hypermesh - Meshing
PPT-2 Starting with hypermesh - MeshingAkshay Mistri
 
PPT-1 Starting with Hypermesh
PPT-1 Starting with HypermeshPPT-1 Starting with Hypermesh
PPT-1 Starting with HypermeshAkshay Mistri
 
Drive wheel motor torque calculations
Drive wheel motor torque calculationsDrive wheel motor torque calculations
Drive wheel motor torque calculationsAkshay Mistri
 

Más de Akshay Mistri (20)

Understanding optistruct & LS-Dyna files using text editor
Understanding optistruct & LS-Dyna files using text editorUnderstanding optistruct & LS-Dyna files using text editor
Understanding optistruct & LS-Dyna files using text editor
 
Theories of failure
Theories of failureTheories of failure
Theories of failure
 
Everything About Seat-belts
Everything About Seat-beltsEverything About Seat-belts
Everything About Seat-belts
 
Mechanical Joints in LS-Dyna for Explicit Analysis
Mechanical Joints in LS-Dyna for Explicit AnalysisMechanical Joints in LS-Dyna for Explicit Analysis
Mechanical Joints in LS-Dyna for Explicit Analysis
 
Automation in Hypermesh
Automation in HypermeshAutomation in Hypermesh
Automation in Hypermesh
 
HIII Headform Calibration Test
HIII Headform Calibration TestHIII Headform Calibration Test
HIII Headform Calibration Test
 
Structural Analysis of Toyota RAV4 and its Convertible version
Structural Analysis of Toyota RAV4 and its Convertible versionStructural Analysis of Toyota RAV4 and its Convertible version
Structural Analysis of Toyota RAV4 and its Convertible version
 
Global Human Body Model Consortium (GHBMC) Head Model Validation
Global Human Body Model Consortium (GHBMC) Head Model ValidationGlobal Human Body Model Consortium (GHBMC) Head Model Validation
Global Human Body Model Consortium (GHBMC) Head Model Validation
 
Setting up a crash simulation in LS-Dyna
Setting up a crash simulation in LS-DynaSetting up a crash simulation in LS-Dyna
Setting up a crash simulation in LS-Dyna
 
Thermal Analysis in Hypermesh (Conduction, Convention and Thermal Expansion)
Thermal Analysis in Hypermesh (Conduction, Convention and Thermal Expansion)Thermal Analysis in Hypermesh (Conduction, Convention and Thermal Expansion)
Thermal Analysis in Hypermesh (Conduction, Convention and Thermal Expansion)
 
Buckling Frequencies for Beams in Hypermesh
Buckling Frequencies for Beams in HypermeshBuckling Frequencies for Beams in Hypermesh
Buckling Frequencies for Beams in Hypermesh
 
Truss Analysis (Mechanics vs. Hypermesh)
Truss Analysis (Mechanics vs. Hypermesh)Truss Analysis (Mechanics vs. Hypermesh)
Truss Analysis (Mechanics vs. Hypermesh)
 
Solar Powered Field Utility Vehicle
Solar Powered Field Utility VehicleSolar Powered Field Utility Vehicle
Solar Powered Field Utility Vehicle
 
Natural Frequencies and Mode shape vectors for 10 Mass-Spring system
Natural Frequencies and Mode shape vectors for 10 Mass-Spring systemNatural Frequencies and Mode shape vectors for 10 Mass-Spring system
Natural Frequencies and Mode shape vectors for 10 Mass-Spring system
 
Modelling Planar Vehicle Dynamics using Bicycle Model
Modelling Planar Vehicle Dynamics using Bicycle ModelModelling Planar Vehicle Dynamics using Bicycle Model
Modelling Planar Vehicle Dynamics using Bicycle Model
 
Analysing simple pendulum using matlab
Analysing simple pendulum using matlabAnalysing simple pendulum using matlab
Analysing simple pendulum using matlab
 
PPT.3 Starting with hypermesh – Static Load Application and Analysis
PPT.3 Starting with hypermesh – Static Load Application and AnalysisPPT.3 Starting with hypermesh – Static Load Application and Analysis
PPT.3 Starting with hypermesh – Static Load Application and Analysis
 
PPT-2 Starting with hypermesh - Meshing
PPT-2 Starting with hypermesh - MeshingPPT-2 Starting with hypermesh - Meshing
PPT-2 Starting with hypermesh - Meshing
 
PPT-1 Starting with Hypermesh
PPT-1 Starting with HypermeshPPT-1 Starting with Hypermesh
PPT-1 Starting with Hypermesh
 
Drive wheel motor torque calculations
Drive wheel motor torque calculationsDrive wheel motor torque calculations
Drive wheel motor torque calculations
 

Último

Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptJasonTagapanGulla
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
lifi-technology with integration of IOT.pptx
lifi-technology with integration of IOT.pptxlifi-technology with integration of IOT.pptx
lifi-technology with integration of IOT.pptxsomshekarkn64
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the weldingMuhammadUzairLiaqat
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgsaravananr517913
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 

Último (20)

Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.ppt
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
lifi-technology with integration of IOT.pptx
lifi-technology with integration of IOT.pptxlifi-technology with integration of IOT.pptx
lifi-technology with integration of IOT.pptx
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the welding
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 

Effects of Occupant Protection Design Parameters in Sled Testing

  • 1. O C C U P A N T P R O T E C T I O N D E S I G N P A R A M E T E R S I N S L E D T E S T I N G P R O J E C T - 2 M A D E BY : A K S H AY M I S T R I 1
  • 2. CONTENTS • Objectives • Injury Criteria to observe • Effects of individual parameters: – Sensor Timing (Slide 5 - 7) – Retractor Load Limiter (Slide 8 - 10) – Airbag Mass-Flow rate (Slide 11 - 14) – Sled Pulse (Slide 15 - 17) • Final Model (18 – 21) • Conclusion Note: Underlined words contain link to go to their respective slides. 2
  • 3. OBJECTIVES • Test conditions: Belted 50% Hybrid III dummy in driver seat subjected to 35 mph impact. • Design parameters to observe: – Sensor timing (-5 ms /+5 ms) – Retractor Load Limiter: Seatbelt load (Scaling: 0.8/1.2) – Airbag mass flow rate (Scaling: 0.8/1.2) – Sled pulse (Scaling: 0.8/1.2) 3
  • 4. INJURY CRITERIA TO OBSERVE Criteria Threshold Head Injury Criteria (HIC15) 700 Chest Displacement [mm] 63 Chest Acceleration [g] 60 Left Femur Load [kN] 10 Right Femur Load [kN] 10 4
  • 5. EFFECT OF SENSOR TIMING 5 Injury Criteria Baseline (@13ms) Timing -5ms (@8ms) Timing +5ms (@18ms) HIC15 722 655 784 Chest Acceleration [g] 109.3 122 132.8 Chest Deflection [mm] 58.44 59 58.3 Left Femur Load [kN] 29.5 27.1 32.6 Right Femur Load [kN] 31.3 29.5 34.2 • Green and Red colors show decrement and increment in the injury values respectively. • Here, pretensioner sensor fire timings were varied. • Early action of pretensioner reduces the dummy travel and hence HIC and femur loads are reduced. • However, due to early action chest deflection increases. • Chest acceleration worsens in both cases.
  • 6. 6 EFFECT OF SENSOR TIMING 0 20 40 60 80 100 120 140 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] Chest Acceleration -5 ms +5 ms 0 10.5 21 31.5 42 52.5 63 0 15 30 45 60 75 90 105 120 135 150 Deflection[mm] Time [ms] Chest Deflection -5 ms +5 ms 0 50 100 150 200 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] HIC 15 -5 ms +5 ms -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Left Femur -5 ms +5 ms -40 -20 0 20 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Right Femur -5 ms +5 ms
  • 7. 7 EFFECT OF SENSOR TIMING • Time -5ms (@8 ms) • Time +5ms (@18 ms)
  • 8. EFFECT OF RETRACTOR LOAD LIMITER 8 Baseline - SF 1 (@3.25 kN) Scale Factor - SF 0.9 (@2.93 kN) Scale Factor - SF 1.2 (@3.9 kN) HIC15 722 760 742 Chest Acceleration [g] 109.3 127.9 128.8 Chest Deflection [mm] 58.44 64.3 65.6 Left Femur Load [kN] 29.5 29.1 29.3 Right Femur Load [kN] 31.3 31.8 31.4 • Increasing and decreasing the retractor load limit, demotes the injury values. • More dummy travel is the reason in case of increasing the load limit. (Late action of retractor) • When limit is decreased, retractor acts early but makes the belt stiff for the occupant which increases the injury values. • Femur loads almost don’t vary for both cases.
  • 9. 9 EFFECT OF RETRACTOR LOAD LIMITER 0 20 40 60 80 100 120 140 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] Chest Acceleration SF : 0.9 SF : 1.2 0 10 20 30 40 50 60 70 0 15 30 45 60 75 90 105 120 135 150 Deflection[mm] Time [ms] Chest Deflection SF : 0.9 SF : 1.2 0 50 100 150 200 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] HIC 15 SF : 0.9 SF : 1.2 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Left Femur SF : 0.9 SF : 1.2 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Right Femur SF : 0.9 SF : 1.2
  • 10. 10 EFFECT OF RETRACTOR LOAD LIMITER • SF: 0.9 (2.9 kN) • SF: 1.2 (3.9 kN)
  • 11. EFFECT OF AIRBAG MASS-FLOW RATE • VSCA: Volume Scale Factor and PSCA: Pressure Scale Factor. • Decreasing the volume factor increases the injury values, as the dummy travel increases. Accelerations and chest deflections increase. • Best results are found when VSCA is increased and PSCA is decreased. Increase in volume reduces the dummy travel and decrease in pressure reduces the stiffness of the bag which is a bit desirable. • Worst case is observed when VSCA and PSCA both are increased, in this case the airbag becomes the cause of injury to the occupant. 11 Baseline - VSCA:1 PSCA:1 Timing - VSCA: 0.8 PSCA: 0.8 Timing - VSCA: 1.2 PSCA:1.2 Timing - VSCA: 0.8 PSCA:1.2 Timing - VSCA: 1.2 PSCA:0.8 HIC15 722 780 749 749 743 Chest Acceleration [g] 109.3 126 125.8 126.5 125.4 Chest Deflection [mm] 58.44 59.4 57 62.4 55 Left Femur Load [kN] 29.5 29.4 45.4 29.6 29.5 Right Femur Load [kN] 31.3 31.3 47.7 31.5 32
  • 12. 12 EFFECT OF AIRBAG MASS-FLOW RATE 0 20 40 60 80 100 120 140 0 15 30 45 60 75 90 105 120 135 150 ChestAcceleration[g] Time [ms] Chest Acceleration VSCA, PSCA: 0.8 VSCA, PSCA: 1.2 0 10 20 30 40 50 60 70 0 15 30 45 60 75 90 105 120 135 150 ChestDeflection[mm] Time [ms] Chest Deflection VSCA, PSCA: 0.8 VSCA, PSCA: 1.2 0 50 100 150 200 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] HIC15 VSCA, PSCA: 0.8 VSCA, PSCA: 1.2 -50 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Left Femur VSCA, PSCA: 0.8 VSCA, PSCA: 1.2 -60 -40 -20 0 20 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Right Femur VSCA, PSCA: 0.8 VSCA, PSCA: 1.2
  • 13. 13 EFFECT OF AIRBAG MASS-FLOW RATE 0 20 40 60 80 100 120 140 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] Chest Acceleration VSCA: 1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2 0 10 20 30 40 50 60 70 0 15 30 45 60 75 90 105 120 135 150 Deflection[mm] Time [ms] Chest Deflection VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2 0 50 100 150 200 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] HIC15 VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Left Femur VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Right Femur VSCA:1.2 PSCA:0.8 VSCA:0.8 PSCA:1.2
  • 14. 14 EFFECT OF AIRBAG MASS-FLOW RATE • VSCA:0.8 PSCA:0.8 • VSCA:1.2 PSCA:1.2 • VSCA:0.8 PSCA:1.2 • VSCA:1.2 PSCA:0.8
  • 15. EFFECT OF SLED PULSE 15 Baseline - SF:1 Scale Factor - SF 0.9 Scale Factor - SF 1.2 HIC15 722 521 1103 Chest Acceleration [g] 109.3 111 147.8 Chest Deflection [mm] 58.44 58.14 58.4 Left Femur Load [kN] 29.5 25.8 35.4 Right Femur Load [kN] 31.3 29.6 35.7 • Decreasing the sled pulse, obviously, decreased the injury values. • Injury values highly increased with the increase of sled pulse.
  • 16. 16 0 20 40 60 80 100 120 140 160 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] Chest Acceleration SF: 0.9 SF: 1.2 EFFECT OF SLED PULSE 0 10 20 30 40 50 60 70 0 15 30 45 60 75 90 105 120 135 150 ChestDeflection[mm] Time [ms] Chest Deflection SF : 0.9 SF : 1.2 0 40 80 120 160 200 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] HIC15 SF : 0.9 SF: 1.2 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Left Femur SF: 0.9 SF: 1.2 -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Right Femur SF: 0.9 SF: 1.2
  • 17. 17 EFFECT OF SLED PULSE • SF: 0.9 • SF: 1.2
  • 18. FINAL MODEL • A knee airbag is recommended to reduce femur loads, is added to the final model. 18 Baseline model Final model Sled Pulse Scale Factor 1 0.95 Pretensioner Sensor timing [ms] 13 10 Knee Airbag VSCA, PSCA NA 0.3, 0.3 Airbag VSCA, PSCA 1, 1 1.2, 0.9 Knee Airbag
  • 19. 19 FINAL MODEL Injury Criteria Threshold Values Baseline Final Model HIC15 700 722 613 Chest Acceleration [g] 60 109.3 52 Chest Deflection [mm] 63 58.44 57.9 Left Femur Load [kN] 10 29.5 13 Right Femur Load [kN] 10 31.3 11.6 • Knee airbag added to the model highly decreases the femur loads. • Slight reduction in sled pulse helps to control the injury values, specially the HIC. • While the combined effect of early action seatbelt pretensioner sensor time and airbag flow scale factors (slightly high VSCA and slightly low PSCA), helps in controlling of HIC and Chest injury values.
  • 20. 20 FINAL MODEL 0 20 40 60 80 100 120 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] Chest Acceleration Baseline Final Model 0 10.5 21 31.5 42 52.5 63 0 15 30 45 60 75 90 105 120 135 150 Deflection[mm] Time [ms] Chest Deflection Baseline Final Model 0 50 100 150 200 0 15 30 45 60 75 90 105 120 135 150 Acceleration[g] Time [ms] HIC15 Baseline Final Model -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Left Femur Baseline Final Model -40 -30 -20 -10 0 10 0 15 30 45 60 75 90 105 120 135 150 Force[kN] Time [ms] Right Femur Baseline Final Model
  • 21. 21 FINAL MODEL • Final Model• Baseline
  • 22. CONCLUSION • Airbag: – High pressure in airbag can be a cause of injury. Similar will be the effect for low volume. – High volume and slightly low pressure is the optimum case. High volume reduces the dummy travel and slightly low pressure will not make the bag very stiff. • Seatbelt: – Early action of pretensioner was seen favorable, reducing the slack proved beneficial. – Making the seatbelt very stiff (retractor force), are the reasons for high chest injuries. • Sled Pulse: – Reduction in sled pulse, decreased the injury values. – However, this should not be reduced highly, since it will not reproduce the exact crash impact scenario which could occur in real life. – Slight reduction in sled pulse is justified, since it could be reduced by improving the structure of the vehicle which could be made to absorb more energy. 22