SlideShare una empresa de Scribd logo
1 de 76
Descargar para leer sin conexión
BURKINA FASO
Unité-Progrès-Justice
Ministère des Enseignements Ministère des Infrastructures
Secondaire et Supérieur du Désenclavement et des Transports
(MESS)
-------------- -----------------------
UNIVERSITE DE OUAGADOUGOU Laboratoire National du Bâtiment
et des Travaux Publics
------------- (LNBTP)
Ecole Nationale Supérieure
d’Ingénieurs de Fada
Filière: Génie-civil (ENSIF)
Rapport de stage pour l’obtention
du Diplôme d’Ingénieur des Travaux
Première promotion Mai 2014
Auteur : Wendyam Arsène Flavien DAMIBA
Maître de stage : M. Ali SANA
Chef du Département Géotechnique Routière
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF i
Dédicaces
 À mes parents Edouard. D. DAMIBA et Scholastique TAPSOBA, j’y suis arrivée
grâce à vous.
 À ma sœur Baowendsom Sylvie Laure DAMIBA, courage ! Plus qu’un pas.
 A toute ma famille, noyau vital de ma réussite à l’école et dans la société ;
 A tous mes amis qui m’ont soutenu dans cette quête de la connaissance et
dans cet apprentissage dans la vie sociale;
 A mon ami Arzouma Modeste KYELEM;
 A tous les promotionnaires avec qui j’ai partagé les joies et les inquiétudes de
l’année ;
 Aux nobles enseignants rencontrés tout au long de ma scolarité !
Qu’ils trouvent dans ce travail l’effort que chacun a consenti !
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF ii
Remerciements
Le plaisir que j’ai eu à effectuer cette étude provient en grande partie de toutes les
personnes qui m’ont encadré et permis d’avancer pendant ce stage. Je tiens à les remercier
mes sincères remerciements :
 Au Directeur Général du Laboratoire National du Bâtiment et des Travaux
Publics (L.N.B.T.P) pour m’avoir accepter comme stagiaire ;
 A mon maître de stage Mr Ali SANA chef du Département Géotechnique Routière
(D.G.R) pour l’attention portée à ma personne ;
 A tout le personnel du L .N.B.T.P que j’ai pu côtoyer merci à chacun d’entre vous
pour votre aide et votre bonne humeur ;
 A l’administration et au corps professoral de l’ENSI-F pour les connaissances
acquises ;
À tous ceux qui m’ont toujours apporté leur soutien et qui d’une manière ou d’une
manière ou une autre, ont contribué à la réalisation de ce stage puissiez vous trouvez ici
l’expression de ma profonde gratitude.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF iii
Résumé
Le but de ce travail est de présenter dans un premier temps, les différents essais
géotechniques tout en soulignant les réalités pratiques de réalisation de ces essais en
laboratoire et in situ ; et dans un second temps, analyser et interpréter les résultats de ses
essais qui seront confrontés aux prescriptions Cahier des Clauses Techniques Particulières
d’un projet de génie civil. Mais il sera avant tout question d’une présentation générale
de la structure d’accueil . Il ressortira à la fin de cette analyse comparative, la décision de
procéder ou non à la réception de l’ouvrage pour la suite de la réalisation.
Ce travail se révèle principalement être une étude de réalisation des différents essais
géotechniques afin de déterminer leurs propriétés ; et le contrôle de qualité en laboratoire et in
situ ; qualité non seulement des matériaux utilisés, mais aussi de l’emploie de ces
matériaux pour les travaux de réalisation des ouvrages en général.
Abstract
The aim of this work is to present initially, the various geotechnical essays while
underlining realities practice realization of these essays laboratory and in situ; and in the
second time, to analyze and interpret the results of its essays which confronting with the
regulations Book of the Particular Technical specifications of a project of civil engineering.
But it will be before any question of a general presentation of the reception facilities. It will
arise at the end of this comparative analysis, the decision to proceed or not to the reception of
the work for the continuation of the realization.
This work mainly proves to be a study of realization of the various geotechnical essays in
order to determine their properties, and it quality control in laboratory and in situ; quality not
only of materials used, but also of in general employs these materials for the initial work of
the works.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF iv
Liste des sigles et abréviations:
A: Coefficient d’aplatissement ou Affaissement
AASHTO : American Association of State Highway and Transportation Official
AG : Analyse granulométrique
AFNOR : Association Française de Normalisation
ASTM : American Society for Testing and Material
CBR : California Bearing Ratio test (essai californien de portance)
Cc : Coefficient de courbure
CCTP : Cahier des Clauses Techniques Particulières
Cu : Coefficient d’uniformité
D : densité
DGR : Département Géotechnique Routière
DSF : Département Sol et Fondation
DS : Département Structure
ENSIF : Ecole Nationale Supérieure d’Ingénieurs de FADA N’Gourma
ES Equivalent de sable
GAL : Grave Argileuse Latéritique
Ic : Indice de compacité
ICBR : indice CBR
IP Indice de plasticité
IPI : Indice Portant immédiat
PS : Poids spécifique
P : Propreté superficielle
OPM : Optimum Proctor Modifié
LNBTP : Laboratoire National du Bâtiment et des Travaux Publics ;
LA : Los Angeles
MDE: Micro Deval à eau
UU : Cisaillement direct Undrained Unconsolided (non drainé non consolidé)
Wl Limite de liquidité
Wp Limite de plasticité
W Teneur en eau
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF v
Table des matières
Dédicaces ....................................................................................................................................i
Remerciements...........................................................................................................................ii
Résumé......................................................................................................................................iii
Abstract .....................................................................................................................................iii
Liste des sigles et abréviations:.................................................................................................iv
Introduction ................................................................................................................................ 1
Chapitre I : Présentation du L.N.B.T.P ...................................................................................... 2
I.1 Domaines d’intervention du L.N.B.T.P..................................................... 2
I.2 Organigramme du L.N.B.T.P............................................................... 2
Chapitre II : Essais géotechniques sur les matériaux................................................................. 4
II.A Département géotechnique routière ..................................................... 4
II.A.1 Section échantillonnage................................................................. 4
II.A.1.1 Echantillonnage ........................................................................ 4
II.A.2 Section granulométrie ................................................................... 5
II.A.2.1 Analyse granulométrique par tamisage............................................. 5
II.A.2.2 Essai de détermination du coefficient d'aplatissement............................ 7
II.A.2. 3 Détermination de la propreté superficielle ...................................... 8
II.A.2.4 Essai de détermination du poids spécifique ou masse volumique réelle des
granulats................................................................................................ 9
II.A.3 Section Limites d’Atterberg et Equivalent de Sable ............................... 10
II.A.3.1 Limites d’Atterberg................................................................ 10
II.A.3.1.3 Essai d’équivalent de sable..................................................... 12
II.A.4 Section Proctor-CBR ................................................................ 14
II.A.4.1 Essai Proctor modifié............................................................. 14
II.A.4.2 Essai CBR.......................................................................... 15
II.A.5 Section Produits hydrocarbonés .................................................... 18
II.A.5.1 Essais d’identification de bitume ................................................ 18
II.A.5.2 Essai Kumagawa ................................................................. 19
II.A.5.3 Essai Marshall.................................................................... 20
II.A.5.4 Essai Duriez........................................................................ 22
II.B Chantier : Travaux de construction et de bitumage de la route RD 152
OUAGADOUGOU- NIOKO- SAABA y compris les bretelles d’accès au CSPS et à l’université
SAINT THOMAS D'AQUIN....................................................................... 24
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF vi
II.B.1 Revêtement ......................................................................... 24
II.B.2 Les contrôles préalables ............................................................ 25
II.C Département sol et fondation ............................................................ 29
II.C.1 Essai de cisaillent direct non drainé non consolidé sur sol argileux................. 29
II.C.3 Essai pénétrométrique (NF P 94-115).............................................. 32
II.D Département structure ................................................................... 33
II.D.1 Etude et fabrication du béton au labo ou in situ ................................... 33
II.D.2 Essai d’affaissement au cône d’Abrams ........................................... 33
II.C.3 Essai de compression ............................................................... 34
II.C.4 Essai de densité apparente des gravillons et sables .............................. 35
II.C.5 Essai Micro-Deval à eau............................................................ 36
II.C.6 Essai Los Angeles ................................................................. 37
II.C.7 Essai de traction de l’acier.......................................................... 39
Chapitre III : Analyse et interprétation des résultats obtenus .................................................. 40
III.1 Paramètres similaires.................................................................... 40
III.2 Analyse granulométrique (essai d’identification)................................... 40
III.3 Equivalent de sable, essai de propreté du gravier, coefficient d’aplatissement et pois
spécifique............................................................................................. 41
III.4 Les limites d’Atterberg (essai d’identification) ..................................... 41
III.5 Essai Proctor Modifié ................................................................ 41
III.6 Essai CBR............................................................................. 41
III.7 Essais sur le bitume et l’enrobé ...................................................... 42
III.8 Densité apparente des matériaux, Los Angeles et Micro-Deval.................... 42
III.9 Formulation du béton simplifié et essai de traction de l’acier...................... 42
III.10 Densitomètre à membrane, plaque et boîte doseuses.............................. 42
III.11 Essai de cisaillement ................................................................ 43
III.13 Pénétromètre dynamique........................................................... 43
Chapitre IV : Remarques et suggestions .................................................................................. 44
Conclusion................................................................................................................................ 45
Références bibliographiques .................................................................. 46
Sources des fichiers intégrés .................................................................. 46
ANNEXES ............................................................................................................................... 47
ANNEXE I : FICHES TECHNIQUES RECAPITULATIVES ............................. 47
ANNEXE II : MATERIELS ET ACCESSOIRES NECESSAIRES........................ 67
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 1
Introduction
L’Ecole Nationale Supérieure d’Ingénieurs de Fada N’Gourma (ENSI-F) est un institut
universitaire qui forme des étudiants aux métiers du Génie (civil, minier,…).Consciente qu’une
formation théorique sans expérience pratique est incomplète voire vaine, un stage obligatoire de
fin de cycle est demandé à tout élève ingénieur pour l’obtention du diplôme d’ingénieur des
travaux.
Aussi la géotechnique étant le domaine d’étude des propretés physiques, mécaniques,
hydrauliques des sols et de leur application en génie civil, elle est indispensable pour les élèves et
étudiants en formation de génie civil.
Ainsi, nous avons choisi le Laboratoire National Burkinabé de Travaux Publiques (L.N.B.T.P)
comme lieu de stage, qui d’ailleurs a bien voulu nous accueillir et nous a donné comme thème :
‹‹Les essais géotechniques en laboratoire et in situ››.
Les essais et le contrôle géotechniques se placent au cœur même de l’exécution de tout chantier
et ils constitueront l’objet de notre présent travail.
Notre travail s’articulera autour trois (03) principaux axes :
Nous présenterons tout d’abord d’une façon générale le L.N.B.T.P, puis nous présenterons
quelques essais géotechniques et leurs réalités pratiques de réalisation ; et nous terminerons
par une exploitation des résultats obtenus lors de ces essais.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 2
Chapitre I : Présentation du L.N.B.T.P
Le Laboratoire National du Bâtiment et des Travaux Publics (L.N.B.T.P/Burkina), est un
établissement public à caractère industriel et commercial. Il a été créé en 1968 par décret n°68-
223/PL/TP. Structure bien organisée, il intervient dans plusieurs domaines du génie civil.
Le L .N.B.T.P siège à Ouagadougou (Burkina Faso) et plus précisément dans le quartier
Gounghin sur le boulevard Naaba ZOMBRE. Il a une représentation appelée Délégation
Régionale à Bobo Dioulasso.
I.1 Domaines d’intervention du L.N.B.T.P
De nombreux services sont rendus par la dite société à plusieurs niveaux. Elle intervient en
effet dans :
 les missions d’études et d’expertises
 les missions de recherche appliquée et fondamentale
 le domaine d’infrastructures et de transport
 le domaine de construction des matériaux
 le domaine de la mécanique des sols et fondations
 le domaine de la recherche
 le domaine du contrôle technique
I.2 Organigramme du L.N.B.T.P
Son personnel est constitué de 277 personnes dont 147 permanents parmi lesquels on
dénombre environ une trentaine de cadres (ingénieurs, techniciens, agents techniques), et 130
temporaires.
Pour réussir la mission qu’il s’est assigné, le L.N.B.T.P s’est tracé une ligne de conduite qui l’a
amené à l’organisation suivante :
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 3
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 4
Chapitre II : Essais géotechniques sur les matériaux
Pour la suite il sera question de procéder par essai dans les différentes sections de chaque
département et pour chacun des essais précédemment cités, de le définir, et de donner son but, son
principe ainsi que le matériel effectivement utilisé pour l’exécution de l’essai et pour finir, son
mode opératoire avec à l’appui des illustrations sous la base qu’un schéma vaut 1000 mots.
Les feuilles de calcul (et/ou l’expression des résultats) ainsi que les formules seront en annexe
I et annexe II : photos matériels.
Le nom d’une section fait référence aux essais qui y sont réalisés.
II.A Département géotechnique routière
II.A.1 Section échantillonnage
II.A.1.1 Echantillonnage
a) Le prélèvement
Les matériaux déposés sur le chantier peuvent ne pas provenir du même emprunt. Par soucis
de ne pas faire l’étude sur le même échantillon au risque d’avoir des résultats erronés, le
prélèvement s’effectue sur toute une planche de longueur d’environ une centaine de mètre.
Quant à la quantité du matériau prélevé, elle est d’environ une soixantaine de kilogramme car le
même matériau devait non seulement subir tous les essais nécessaires, mais aussi servir de réserve
pour une éventuelle reprise pour confirmer des résultats contradictoires, divergents avec ceux
obtenus par le laboratoire de l’entrepreneur.
De retour au laboratoire, le matériau prélevé de quantité Q est étalé puis séché à l’air libre
pendant environ quatre (04) heures de temps, dans le but de diminuer la teneur en eau du matériau
avant l’essai car une importante teneur en eau pourrait nuire à la bonne qualité des résultats.
b) Exécution de l’essai
Au laboratoire, l’essai doit être fait sur une quantité plus faible q. Comment séparer cette
quantité q représentative de Q ? Deux procédés de base assez satisfaisante sont utilisés : par
quartage et à l’aide d’échantillonneur.
NOTA : Une fois le matériau provenant du chantier jugé sec, on procède au tamisage. En
effet le matériau est passé au tamis de 20mm afin d’éliminer les
graviers grossiers. Puis seuls les passants sont retenus pour
l’échantillonnage.
 Le quartage
Comme le nom l’indique, on divise l’échantillon en quarts.
Placer l’échantillon bien homogénéisé dans un bac métallique à
bords peu élevés (de préférence), et l’étaler. A l’aide d’une
truelle, partager d’abord eu deux moitiés (1), puis en quatre
quarts (2), sensiblement égaux. Eliminer les fractions A et D, et
réunir les fractions opposées B et C: on a ainsi la moitié de l’échantillon primitif.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 5
 Emploi d’échantillonneur
Cet appareil de laboratoire permet de diviser facilement
en deux parties représentatives la totalité d’un échantillon
initial. Des cloisons transversales constituent une succession
d’entonnoirs dont les ouvertures sont dirigées d’un côté et de
l’autre. Le matériau à étudier, versé dans l’échantillonneur à
l’aide d’une pelle spéciale est recueilli dans 2 petits bacs.
Chaque moitié, représentative de l’ensemble peut être encore
partagée en 2, puis encore en 2 etc.….
A la fin, l’échantillon est reparti dans des plats ‘points', pesés, étiquetés. L’essai Proctor nécessite
5 points (6 kg d’environ), l’essai CBR nécessite 3 points.
NOTA : Ces deux procédés peuvent être utilisés séparément ou conjointement, en fonction
des quantités à séparer et de la grosseur maximale des grains.
II.A.2 Section granulométrie
II.A.2.1 Analyse granulométrique par tamisage
a) Définition et but de l’essai
L’analyse granulométrique est un essai qui consiste à étudier la granulométrie du granulat,
c’est –à- dire la distribution des grains suivant leur dimension en déterminant par pesée
l’importance relative des classes de grains de dimension bien définies par pourcentages.
Elle se fait par tamisage pour la fraction de granulat dont le diamètre des grains est supérieur à
0.080 mm et par sédimentométrie pour la fraction des sols dont le diamètre des grains est inférieur
à 0.08 mm.
Pour ce travail l’analyse granulométrique s’est limitée au tamisage.
b) Principe de la méthode
L’opération consiste à éliminer par lavage à l’eau des fillers puis à procéder un tamisage
après séchage à l’étuve. À partir de la masse on détermine les différents pourcentages des refus.
Les résultats sont exprimés sous forme d’un graphique semi-logarithmique appelé courbe
granulométrique. Cette courbe est l’un des indicateurs permettant de caractériser la distribution
granulométrique du matériau.
c) Matériel nécessaire
une série de tamis (fils métalliques à mailles carrées),
un tamis de 80 µm pour le lavage,
une étuve pour le séchage,
un fond de cuve et couvercle,
une brosse métallique,
une balance de précision.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 6
d) Mode opératoire
d.1) Les préparations avant l’essai
 Préparations avant l’essai d’analyse granulométrique par tamisage
Après l’échantillonnage, le tas réservé pour l’essai granulométrique par tamisage est recueilli
dans un plat, pesé puis lavé à grande eau sur le tamis de 80µm pour éliminer les fillers.
Le lavage est terminé si l’eau qui s’écoule du tamis prend l’aspect clair.
Après lavage, les refus son mis à l’étuve à 105°C pendant 24H.
À sa sortie de l’étuve, on pèse le matériau pour déterminer sa masse sèche et on commence le
tamisage.
 Préparations avant l’essai d’analyse granulométrique par tamisage à sec après
lavage
1
M1h Etuvage Pesée M1s
2
M Mh Lavage au tamis 80µm Etuvage Pesée Ms
A partir de l'échantillon M, on divise le matériau en deux échantillons.
1. Le premier échantillon sert exclusivement à établir une règle de proportionnalité sur la teneur
en eau considérée uniforme du granulat. Pour cela il est prélevé et pesé humide, M1h puis séché et
pesé sec M1s.
2. Le second est prélevé et pesé humide, Mh puis tamisé par lavage (sur le tamis de 80µm) séché
et pesé sec Ms.
Le raisonnement permettant de déterminer (par calcul) la masse sèche totale de l’échantillon à
laver sans le sécher est le suivant.
Si la masse humide d’un échantillon de granulat, M1h, donne une masse sèche M1s alors la
masse de n’importe qu’elle autre échantillon du même granulat Mh donnera la masse totale sèche
Ms correspondante par proportionnalité (règle de trois), soit: Ms =Mh (M1s/M1h).
La masse sèche Ms1 prélevée sur Ms sera utilisée pour l’essai.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 7
d.2) L’exécution de l’essai
Après observation du granulat, faire choix du tamis le plus fin et du tamis le plus gros. On
s’arrange en général pour que le granulat passe entièrement au travers du tamis le plus gros.
Empiler les tamis dans l’ordre croissant (bas vers le haut), agiter horizontalement le tout
manuellement jusqu’à ce qu’il ne passe pratiquement plus de matière susceptible d’influencer les
résultats de façon significative. Puis agiter individuellement chaque tamis, supérieur jusqu’au
dernier (c’est le tamisage).
Peser les refus en cumulé. C’est à dire, peser le contenu du premier tamis puis y ajouter le contenu
du tamis immédiatement inférieur pour avoir le refus cumulé, et ainsi de suite.
Porter les résultats des refus cumulés en g dans un tableau.
Calculer les refus cumulés en %
Calculer les tamisât en %
Tracer la courbe.
Les feuilles d’essais et les courbes en annexe1, l’analyse et l’interprétation des résultats au
chapitre III.
II.A.2.2 Essai de détermination du coefficient d'aplatissement
a)Définition et but
Le coefficient d’aplatissement d’une classe correspond au passant en % du tamisage sur la
grille à fentes correspondante.
La détermination du coefficient d'aplatissement est l'un des tests permettant de caractériser la
forme plus ou moins massive des granulats.
b) Principe
Séchée et pesée, la prise d’essai est d’abord divisée en classes granulaires d/D selon leur
grosseur par tamisage sur tamis à mailles carrées. Chacune de ces classes est à son tour passée sur
une grille à fente parallèles d’écartement G/ E> 1,58.
La forme d’un élément est définie par trois dimensions principales à savoir la longueur (L),
l’épaisseur (E) et la grosseur (G). Le coefficient d’aplatissement A d’un lot de granulat soumise à l’essai
est par définition le pourcentage des éléments tels que : G/E>1,58
c) Matériel nécessaire
une balance
une étuve
une série Tamis de 80 µm à 80 mm
une série Grille à fente de 2.5 mm à 20 mm
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 8
d) Mode opératoire (NF P 18-561)
Granulat de masse M0 déversé sur tamis à maille d2
Passant Mg à travers le tamis d1 et refusé sur d2
Déversé sur grille à fentes d’écartement d2/1,58
Matériau refusé = bonne forme
Tamis d2 immédiatement inférieur à d1
1 2 Matériau passant Me =mauvaise forme
1. L’échantillon (point) provenant de l’échantillonnage est d’abord écrêté (lavage) au tamis
de 4mm et le refus séché de masse M0 est utilisé pour le double tamisage.
Pour chaque tamis, peser le refus élémentaire de masse Mg,
2. Passer ensuite le refus élémentaire à la grille, recueillir le passant et le peser Me,
Le coefficient d’aplatissement de cette classe granulaire est 100x (Me/Mg).
Procéder de même pour les autres tamis.
Le coefficient d’aplatissement global A est donné par: A=100x (∑Me/∑Mg).
La feuille d’essai en annexe2, l’analyse et l’interprétation des résultats au chapitre III.
II.A.2. 3 Détermination de la propreté superficielle
a) Définition et but
La propreté superficielle est définie comme étant le pourcentage pondéral de
particules de dimensions inférieures à 0,5mm adhérentes à la surface ou mélangées à un
granulat de dimension supérieure à 2mm.
L'essai de propreté d'un gravier met en évidence la présence d'éléments fins dans le
gravier et permet de les quantifier. Le but de l'essai est donc de déterminer la propreté d'un
granulat au regard de son utilisation possible.
b) Principe de la méthode
Les éléments fins contenus dans le granulat à tester sont séparés par lavage sur un tamis
d'ouverture 0.5mm. Leur pourcentage est déterminé par pesée après séchage du refus.
c) Matériel nécessaire
un ami de 0,5 mm
une balance de precision1g
 une étuve
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 9
3
d) Mode opératoire (NF P 18-591 sept. 90)
Il s’agit de séparer par lavage sur tamis de 0.5 mm les particules inferieures à cette dimension.
Pour l’expression des résultats, on calcule d’abord la masse sèche de l’échantillon soumis à l’essai
Ms à partir de la formule suivante :
Ms (g) = Mh x (M1s/M1h).
M1h : le premier échantillon préparé;
Mh : le deuxième échantillon préparé ;
M1s : la masse sèche du premier échantillon séché à l’étuve.
Ensuite, on calcul la masse sèche m des éléments inferieurs à 0.5 mm par la formule :
m(g) = Ms – m’
La feuille d’essai en annexe3, l’analyse et l’interprétation des résultats au chapitre III.
II.A.2.4 Essai de détermination du poids spécifique ou masse volumique réelle des granulats
Par définition, c’est la masse du granulat sec sans les vides (pores) occupant l’unité de volume V
mesuré avec le pycnomètre.
Le matériau est d’abord lavé au tamis de 4mm et séché puis on prend une masse de prise d’essai
selon la taille du ballon.
Plaque de verre eau
P1 P2 P3 P4
Ballon vide Les pesées Matériau
 Peser le ballon (propre, sec) vide et sa plaque de verre soit le poids P1,
 Le remplir intégralement d’eau en le couvrant de sa plaque de verre afin d’éliminer si
nécessaire les bulles d’air emprisonnées soit le poids P2,
 Vider le ballon, y verser une certaine quantité de matériau sec soit le poids P3,
 Une fois le matériau versé, remplir nouveau celui-ci d’eau (laisser reposer minimum
15mn), et faire le vide au moyen de la cloche à vide (2h) afin d’éliminer les pores, et peser
soit le poids P4.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 10
Renouveler l’opération pour faire la moyenne.
NOTA : La méthode est dite celle du pycnomètre mais dans ce cas, un ballon a été utilisé.
La feuille d’essai en annexe4, l’analyse et l’interprétation des résultats au chapitre III.
II.A.3 Section Limites d’Atterberg et Equivalent de Sable
II.A.3.1 Limites d’Atterberg
a) Définition
La limite d’Atterberg informe sur l’étendue de la plage de teneur en eau à l’intérieur de
laquelle le sol remanié a un comportement plastique, c’est-à-dire « pâteux ». C’est l’un des essais
de laboratoire les plus complexe car elle demande la présence effective, l’attention ainsi que le
bon sens de l’opérateur. L’essai s’effectue sur les fines et deux des cinq (05) limites d’Atterberg
étaient déterminés au laboratoire. Il s’agit de la limite de liquidité et celle de plasticité.
II.A.3.1.1 Limite de liquidité
a) But et principe de la méthode
Le but de cet essai est de déterminer la teneur en eau d’un échantillon à son passage de
l’état liquide à l’état plastique.
L’essai consiste à déterminer le nombre de coup à la coupelle de Casagrande permettant de
refermer d’environ1.mm les deux (02) lèvres de la rainure et de déterminer la teneur en eau
correspondant au nombre de coups. On répète cinq fois l’opération et on trace la droite de la limite
de liquidité appelée courbe d’écoulement, représentant la teneur en eau en fonction du nombre de
coups. La limite de liquidité est ainsi obtenue à partir de cette droite et correspond à la teneur en
eau obtenu avec 25 coups à la coupelle de Casagrande.
b) Matériel nécessaire
un plat pouvant contenir tout le matériau après lavage,
un tamis de 0.4mm pour le lavage,
une pipette d’eau,
appareil de Casagrande et accessoires,
une plaque en acier pour le malaxage,
une balance,
une étuve pour la détermination de la teneur en eau.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 11
c) Mode opératoire (NFP 94-051)
 Préparation avant l’essai
Après échantillonnage, l’échantillon réservé aux limites est lavé à l’eau sur le tamis de 0.4
mm soit de module AFNOR n° 27. Seules les particules fines passant à ce tamis recueillies dans
un plat seront retenues pour l’essai. Le plat contenant l’eau trouble est ensuite déposé plusieurs
heures à l’ombre pour permettre aux fines de décanter. L’eau claire surnageant la pâte est
perpétuellement chiffonnée pour accélérer le processus de décantation.
 L’exécution de l’essai
La pâte est renversée sur la plaque métallique, et on
commence le malaxage qui dure quelques minutes.
Le but est d’homogénéiser la pâte et on la considèrera
homogène lorsque qu’elle est exempte de morte.
Une fois homogène et après avoir bien nettoyé la
coupelle de Casagrande, la pâte est délicatement remplie
sur le plateau de la coupelle et on racle soigneusement la
moitié que l’on remet sur la plaque.
Le but du raclage est de respecter la prescription de la norme selon laquelle l’épaisseur au centre
doit être de 15 à 20 mm. Aussi, la pression exercée sur la pâte permet pour ainsi de rendre le
remplissage parfait.
À l’aide l’outil à rainurer, on crée d’un seul mouvement une rainure séparant complètement la pâte
en deux.
À l’aide de la manivelle de la coupelle, effectuer une série de choc régulier d’environ 02 coups/s.
Pendant ce temps l’attention de l’operateur doit être fixée sur les deux lèvres de la rainure car il
doit arrêter les coups dès lors qu’elle se touche d’environ 15 mm. L’essai n’est acceptable que si
l’on obtient au premier essai un nombre de coups supérieur à quinze (15).
Noter alors le nombre de coups et prélever des tares pour déterminer de la teneur en eau après
avoir pesé la masse humide et répéter ainsi l’opération pour les trois autres points de la droite.
La feuille d’essai en annexe5, l’analyse et l’interprétation des résultats au chapitre III.
II.A.3.1.2 Limite de plasticité
a) But et principe de la méthode
Cet essai relativement plus simple que le précèdent a pour but de déterminer la teneur en
eau d’un échantillon de sol de son passage de l’état liquide à l’état solide.
Appareil de Casagrande
²
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 12
Le principe de l’essai consiste à rouler à la main et contre une plaque un échantillon de sol
jusqu’à observer l’apparition des fissures et procéder à la détermination de la teneur en eau dès
l’apparition de ces fissures.
b) Matériel nécessaire
L’essai est généralement effectué après la limite de liquidité. Ainsi, une partie du précédant
matériel est reconduit :
le tamis de 0.4 mm,
la plaque métallique,
la pipette,
l’étuve.
c) Mode opératoire (NFP 94-051)
L’exécution de l’essai consiste à confectionner un cylindre de
terre en rouler à la main et contre une plaque un échantillon jusqu’à
ce qu’il présente les dimensions suivantes :
Diamètre 3 mm,
Longueur 10-15 cm.
On s’arrête dès l’apparition de fissure sur le cylindre.
Découper ensuite ce cylindre en trois ou quatre parties que l’on partage dans deux tares.
Répéter l’opération cinq ou six fois et peser les cylindres dans des tares pour déterminer la masse
humide.
Des tares sont ensuite mises à l’étuve pour la détermination de la teneur en eau.
La feuille d’essai en annexe5, l’analyse et l’interprétation des résultats au chapitre III.
II.A.3.1.3 Essai d’équivalent de sable
a) Définition et but de l'essai
L'équivalent de sable (ES) est le rapport multiplié par 100 de la hauteur de la partie
sableuse sédimentée à la hauteur totale du floculat par rapport au fond de l’éprouvette.
L'essai d'équivalent de sable permet de mesurer la propreté d'un sable. Il rend
compte globalement de la quantité des éléments fins contenus dans ce sable : fines de nature
siliceuse, calcaire et argileuse y compris celles enveloppant les granulats de dimension supérieure
à 80µm et qui n’apparaissent pas dans l’analyse granulométrique par voie sèche.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 13
b) Principe de la méthode
L'essai consiste à faire floculer les éléments fins d'un sable mis en suspension
dans une solution lavante puis, après un temps de mise au repos donné, à mesurer la hauteur des
éléments sédimentés.
Il est effectué sur la fraction du sable passant au tamis à mailles carrées de 5mm.
c) Mode opératoire
 Préparation de l’échantillon
L’essai est réalisé sur les granulats 0/2mm à une teneur en humidité inférieure à 2% à la
température ambiante (25C0
).Ainsi dans certains cas il est nécessaire de réduire (en étalant à l’air
car étant trop humide) ou d’augmenter (trop secs) la teneur en humidité naturelle afin d’obtenir
une prise d’essai dont l’humidité est comprise entre 0 et 2%.
Après avoir tamisé l’échantillon humide au tamis de 2mm le passant est prélevé dans une
tare et mis à l’étuve à 105C0
pendant au moins 4h afin de déterminer la teneur en eau initiale W%.
Prélever pour chaque prise une quantité (Mh) de matériau humide correspondant à 120 g ± 1 g de
matériau sec, c'est à dire : Ms=120(1+W/100) en g et on commence l’essai proprement dit.
 Exécution de l’essai
Remplir les 2 éprouvettes de solution lavante jusqu'au repère n°1(100ml), puis verser les
prises de matériau. Eliminer les bulles d'air en frappant à plusieurs reprises la base de l’éprouvette
sur la paume de la main pour déloger les bulles d’air et
favoriser le mouillage de l’échantillon puis laisser
reposer 10 mn.
Boucher les 2 éprouvettes et les placer sur l’agitateur
mécanique.
Laver les parois intérieures des éprouvettes à l'aide du tube
laveur et remplir jusqu'au trait repère n°2
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 14
Laisser reposer 20 mn ± 10 s
Déterminer ESv et ES
H1, H'2, H2 sont arrondis au mm près (piston taré de 1Kg).
La feuille d’essai en annexe6, l’analyse et l’interprétation des résultats au chapitre III.
II.A.4 Section Proctor-CBR
II.A.4.1 Essai Proctor modifié
a) Définition et but de l’essai
Au fur et à mesure que la teneur en eau augmente, l’eau agit comme un lubrifiant, elle réduit
les frottements et facilite les glissements (ce qui amène le sol à se ramollir et à devenir plus facile
à travailler). Les grains peuvent alors, sous l’effet du compactage, se serrer en ne laissant subsister
entre eux qu’un minimum de vides résiduels. Il en résulte des densités plus élevées et des teneurs
en air plus faibles.
L'essai Proctor tient son nom de l'ingénieur Ralph R. Proctor, il reproduit le même phénomène au
laboratoire afin de déterminer la densité maximale du sol et des granulats analysés, en d’autres
termes savoir comment manier un sol ou des granulats de sorte qu’avec un volume de vide
restreint on ait un maximum de concentration en matériau élevée.
L’essai Proctor a pour but de déterminer la teneur en eau optimale pour un sol de remblai
donné et des conditions de compactage fixées qui conduit au meilleur compactage possible.
Autrement dit, l’essai a pour objectif de déterminer la teneur en eau correspondant à une capacité
portante maximale.
b) Principe de la méthode
L'essai consiste à tester la compacité du sol porté à différentes teneur en eau variable et croissante
d’amplitude 2, et à mesurer la teneur en eau et son poids spécifique après compactage.
L’opération est répétée cinq (05) fois de suite jusqu’à la chute du poids spécifique. Cinq (05)
points de la courbe densité sèche en fonction de la teneur en eau sont alors déterminés.
Les coordonnées ( , ) correspondants à l’Optimum Proctor Modifié (OPM) sont
représentés par le point maximal de la courbe qui donne en abscisse la teneur en eau optimale pour
une compacité maximum en ordonnée.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 15
c) Matériel nécessaire à l’essai
un moule CBR + embase,
une dame Proctor modifiée,
une règle à araser métallique,
un disque d’espacement,
une bâche à homogénéisation,
une éprouvette graduée (1000 ml :10 ±5 ; 20°C),
des tares au nombre de 10,
une clé mécanique,
une étuve de 300°C max,
une balance (kern max 16100g d=0,1g).
d) Mode opératoire (NFP 94-093)
Un des cinq (05) échantillons marqués est renversé dans la bâche à homogénéiser. L’essai
débute à 2% de teneur en eau par ajout aux matériaux d’une quantité d’eau correspondant à 2% de
la masse de l’échantillon consigné sur l’étiquette. Étant donné que la masse volumique de l’eau est
de un kilogramme par litre (1Kg/L), la quantité d’eau à ajouter correspond directement au volume
mesuré dans l’éprouvette graduée.
Le matériau est ensuite malaxé jusqu’à obtention d’un mélange homogène. Deux tares y sont
directement prélevées pesées et mises à l’étuve pour la détermination de la teneur en eau. L’essai
Proctor modifié est compacté en cinq (05) couches à raison de cinquante-six (56) coups par
couche. Le matériau est dit compacté à 100%.
Après le compactage de la dernière couche, on s’assure que le matériau a dépassé le moule
d’environ un centimètre (1cm), puis on arase délicatement en commençant par le centre.
On ôte l’embase et le disque d’espacement puis on pèse le moule contenant le matériau compacté
et arasé. On renouvelle l’opération en variant de façon croissante la teneur en eau. On passe ainsi
de 2% à 4%.
NOTA : Par expérience la teneur en d’eau est atteinte lorsque le matériau humidifié a une certaine
prise.
Les feuilles d’essai en annexe7, l’analyse et l’interprétation des résultats au chapitre III.
II.A.4.2 Essai CBR
a) Définition et but de l’essai
Le California Bearing Ratio test (CBR) est un essai de portance (aptitude des matériaux à
supporter les charges) des remblais et des autres couches des ouvrages routiers. Selon les trois (03)
types d’essais CBR, on distingue: l’indice CBR immédiat, l’indice CBR après imbibition et
l’indice CBR portant.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
L’essai CBR immédiat est une mesure de résistance au poinçonnement d’un sol compacté à sa
teneur en eau naturelle. Il sert directement de référence dans les régions peu
variation hydrique considérable.
Le but de cet essai est de déterminer expérimentalement des indices portants (IPI, ICBR) qui
permettent
d’établir une classification des sols (GTR),
d’évaluer la traficabilité des engins de terrassement(IPI),
déterminer l’épaisseur des chaussées (CBR augmente
b) Principe de la méthode
La charge apportée par le pneu sur la chaussée poinçonne le sol de fondation. Ce
poinçonnement est d’autant plus petit que l’épaisseur de la chaussée est grande.
L’immersion pendant 4 jours dans de l'eau correspond aux conditions hydriques
la vie de l’ouvrage.
Une charge d’environ la charge de service est ensuite appliquée et on poinçonne le matériau dans
des conditions déterminées (vitesse constante et déterminée) tout en mesurant les efforts (F) et les
déplacements (Δh) qui en résultent. On obtient la courbe d’essai. Une comparaison de ces résultats
avec ceux obtenus sur un sol de référence (californien) est ensuite effectuée.
c) Matériel nécessaire
une moule CBR,
une dame Proctor modifiée,
une règle à araser métallique,
un disque d’espacement,
une bâche d’homogénéisation,
une éprouvette graduée (1000ml
des tares,
une clé mécanique,
une étuve de 300°C max,
une balance (Kern max 16100g d=0.1g),
une poinçonneuse CBR,
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
L’essai CBR immédiat est une mesure de résistance au poinçonnement d’un sol compacté à sa
teneur en eau naturelle. Il sert directement de référence dans les régions peu
Le but de cet essai est de déterminer expérimentalement des indices portants (IPI, ICBR) qui
d’établir une classification des sols (GTR),
d’évaluer la traficabilité des engins de terrassement(IPI),
éterminer l’épaisseur des chaussées (CBR augmente ⇒ épaisseur diminue),
La charge apportée par le pneu sur la chaussée poinçonne le sol de fondation. Ce
poinçonnement est d’autant plus petit que l’épaisseur de la chaussée est grande.
L’immersion pendant 4 jours dans de l'eau correspond aux conditions hydriques
Une charge d’environ la charge de service est ensuite appliquée et on poinçonne le matériau dans
des conditions déterminées (vitesse constante et déterminée) tout en mesurant les efforts (F) et les
en résultent. On obtient la courbe d’essai. Une comparaison de ces résultats
avec ceux obtenus sur un sol de référence (californien) est ensuite effectuée.
une dame Proctor modifiée,
une règle à araser métallique,
une bâche d’homogénéisation,
une éprouvette graduée (1000ml : 10± 5,20°C),
une balance (Kern max 16100g d=0.1g),
16
L’essai CBR immédiat est une mesure de résistance au poinçonnement d’un sol compacté à sa
teneur en eau naturelle. Il sert directement de référence dans les régions peu humide, sans
Le but de cet essai est de déterminer expérimentalement des indices portants (IPI, ICBR) qui
épaisseur diminue),
La charge apportée par le pneu sur la chaussée poinçonne le sol de fondation. Ce
poinçonnement est d’autant plus petit que l’épaisseur de la chaussée est grande.
L’immersion pendant 4 jours dans de l'eau correspond aux conditions hydriques prévues pendant
Une charge d’environ la charge de service est ensuite appliquée et on poinçonne le matériau dans
des conditions déterminées (vitesse constante et déterminée) tout en mesurant les efforts (F) et les
en résultent. On obtient la courbe d’essai. Une comparaison de ces résultats
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 17
deux disques de surcharge.
d) Mode opératoire (NFP 94-078)
 Le compactage
L’échantillon (mélange des trois (03) points marqués provenant de l’échantillonnage) est
renversé dans la bâche à homogénéiser. L’essai débute à l’optimum Proctor modifié, C’est-à-dire
qu’on ajoute aux matériaux une quantité d’eau correspondant à la teneur du matériau déterminé à
l’optimum Proctor modifié.
Le matériau est ensuite malaxé pour être rendu homogène, puis la bâche à homogénéise est
recouverte sur elle-même pour limiter les pertes d’eau par évaporation.
Le compactage s’effectue en cinq (05) couches. Le principe de compactage est identique à celui de
l’essai Proctor modifié.
Après compactage de la dernière couche, on s’assure que le matériau à dépasser le moule
d’environ un centimètre (1cm), puis on arase délicatement en commençant par le centre.
On ôte l’embase et le disque d’espacement puis on vérifie que la masse moule contenant le
matériau compacté et arasé, est approximativement identique à celle obtenue théorique
connaissant le volume du moule, l’eau de moulage et la densité du matériau.
Pendant le compactage, des tares sont prélevées directement dans le bac à homogénéisation et
pesés pour la détermination de la teneur en eau.
L’opération est ainsi effectue avec une énergie de compactage de dix (10), vingt-cinq (25) et
cinquante-six (56) coups.
 L’imbibition
L’opération d’imbibition est réalisée comme suit :
Après avoir pesé l’ensemble moule (retourné) + embase + échantillon (compacté et arasé), on
place successivement un disque en feuille de papier qui servira de filtre et une charge constituée
par des disques annulaires de 2.265Kg représentant
l’équivalent de la contrainte imposée par la chaussée sur la
plate-forme.
Le tout est immergé pendant quatre (04) jours (soit 96h dans
un bac rempli d’eau), la plaque de base étant un peu écarté du
fond pour permettre le passage de l’eau.
 Le Poinçonnement
Pour le poinçonnement, la poinçonneuse utilisée est de
type manuel muni d’un piston de poinçonnement de diamètre
4.96cm et de deux (02) comparateurs : un de cadence et
Poinçonneuse manuelle
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 18
l’autre permettant suivre l’enfoncement du piston de 19,35 cm2
de section.
Un opérateur effectue un mouvement régulier de rotation de la manivelle de la poinçonneuse
(manuelle), pendant qu’un second note les valeurs de l’enfoncement en fonction des valeurs
prédéfinies de cadence. Il en est de même pour tous les trois (03) moules.
Les feuilles d’essais en annexe8, l’analyse et l’interprétation des résultats au chapitre III.
II.A.5 Section Produits hydrocarbonés
II.A.5.1 Essais d’identification de bitume
Ces trois essais permettent de déterminer les caractéristiques intrinsèques d’un bitume pur à
savoir sa densité relative, son point de ramollissement et sa pénétrabilité afin de déterminer sa
classe.
Les feuilles d’essais en annexe9, l’analyse et l’interprétation des résultats au chapitre III.
II.A.5.1.1 Détermination de la densité relative à 250
C, méthode au pycnomètre
Afin de rendre le liant suffisamment fluide (le ramollir), il est légèrement chauffé en ayant soin
d'éviter toute perte de matières volatiles.
Après avoir pesé le pycnomètre propre et sec, muni de son bouchon (masse P1), le remplir
précautionneusement avec l'eau distillée, mettre le bouchon en place et s'assurer que le
pycnomètre soit bien rempli sans présence de bulle d'air (masse P2).
Introduire l'échantillon de bitume dans le pycnomètre en évitant la formation de bulles d'air.
L'échantillon doit remplir entre ½ et ¾ du volume apparent total du pycnomètre. Le pycnomètre
contenant le liant est ensuite refroidi pendant 1h jusqu'à la température du laboratoire et pesé au
0,1 mg près (masse P3).
On place ensuite le pycnomètre rempli du mélange non miscible d’eau et bitume dans un bain
thermostatique à 25°C pendant 30mn et on ajuste si nécessaire le niveau d'eau du pycnomètre au
moyen de l'eau distillée à (25 °C) et en remettant le bouchon en place. Retirer le pycnomètre du
bain et essuyer immédiatement le sommet du bouchon d'un coup de serviette. Essuyer et sécher le
reste de la surface extérieure du pycnomètre et le peser au 0,1 mg près (masse P4).
II.A.5.1.2 Détermination du point de ramollissement (méthode bille et anneau)
Pour se faire un échantillon fluidifié par chauffage est versé dans deux anneaux, reposant
sur une plaque enduite de vaseline. On les laisse se refroidir en 30 mn, raser ensuite l’excès
( aplanir) avec une spatule avant de placer l’ensemble dans un vase d’eau distillée à 5°C +
-1° durant 15 mn. Puis on mesure la température à laquelle une bille d’acier, placée à la surface
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 19
du produit contenu dans chaque anneau de métal, tombe d’une hauteur déterminée après avoir
traversé le produit progressivement ramolli sous l’effet d’une élévation de température par
chauffage effectuée à vitesse constante (5°C/mn).On prend la moyenne des deux températures.
NOTA : Le matériel utilisé est à la même température que la prise d’essai.
II.A.5.1.3 Détermination pénétrabilité à l'aiguille
On place la prise d’essai (25°C) sur le pénétromètre en plaçant l’aiguille chargée à 100g
de sorte à ce qu’elle affleure sa surface . Régler l’aiguille à 0, la libérer pendant 5 s, la
bloquer et mesurer sa profondeur d’enfoncement. La valeur retenue sur chaque coupelle est la
moyenne de trois déterminations ne sortant pas d’une étendue de 3.
a) Matériel nécessaire pour les trois essais
une balance de précision +thermomètre
un pycnomètre +plat pour bain thermostatique+réfrigérateur+eau distillée
un appareil Bille Anneau +plaque chauffante
un pénétromètre à bitume
Point de ramollissement Pénétrabilité
II.A.5.2 Essai Kumagawa
L’essai à pour objet la détermination de la teneur en bitume des enrobés.
a) Principe
L’essai de détermination de la teneur en bitume d’un enrobé par la méthode Kumagawa
consiste à laver l’enrobé dans l’appareil Kumagawa avec un solvant ‘perchlore’ qui désolidarisera
complètement le bitume des granulats par dissolution à chaud au cours d’une distillation sous
reflux.
b) Matériel nécessaire
une étuve
une balance
un appareil Kumagawa
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 20
un solvant
une cartouche+papier filtre normalisé
c) Mode opératoire
Un échantillon d’enrobé est pesée puis passé à l’étuve réglée à 120° C pour le ramollir. On
pèse séparément le filtre+cartouche et le filtre seul. On verse ensuite l’échantillon dans la
cartouche et on pèse filtre+cartouche+enrobé .Puis monter soigneusement le décanteur, le collier,
le réfrigérant et l’alimentation en eau. On place le tout dans l’appareil Kumagawa mis en marche
pendant au moins 4h avec 2l de solvant. Au fait on attend que l’enrobé soit lavé jusqu’à ce que le
liquide qui s’écoule avec le bitume devienne clair. On transfère alors le filtre+cartouche+enrobé
dans l’étuve. Après séchage on procède aux différentes pesées qui vont permettre de calculer les
teneurs en bitume par rapport à l’enrobé et par rapport aux granulats.
On effectue généralement sur les granulats propres et séchés une analyse granulométrique.
NOTA : L’eau n’est pas recueillie donc pas de teneur en eau.
Les feuilles d’essais en annexe10, l’analyse et l’interprétation des résultats au chapitre III.
II.A.5.3 Essai Marshall
a) Définition et but de l’essai
Par définition, le quotient Marshall est le rapport S/F entre la stabilité S et le fluage F.
C’est un essai permet de déterminer pour une température et une énergie de compactage données,
les caractéristiques physique et mécanique: le pourcentage de vide, la résistance mécanique dite
« stabilité », l’affaissement dit « fluage » et le quotient Marshall des éprouvettes d’un enrobé
bitumineux à chaud.
b) Principe
L’essai consiste à la confection d’éprouvettes cylindriques d’enrobé compactées selon un
mode de compactage dynamique (analogue au Proctor, avec une dame Marshall à raison de 50
coups par face) puis à les soumettre à des essais physiques et mécaniques Marshall (mesures
géométriques, pesée hydrostatique, compression diamétrale).L’essai est réalisé avec trois
éprouvettes.
c) Matériel nécessaire
une balance munie d’un crochet pour pesée hydrostatique
 une étuve
une dame Marshall : hauteur de chute de 460mm
trois moules Marshall
un bain thermostatique
une presse Marshall Anneau dyn. 60 KN + Mâchoire d’écrasement + Fluagemètre
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 21
d) Mode opératoire (NF P 98-251-2)
 Préparation de l’échantillon
Le mélange hydrocarboné ou enrobé est fabriqué en laboratoire suivant la norme à la
température de référence ou prélevé sur le chantier en général par carottage.
L'échantillon, dans un plat est mis à l'étuve à 150°C pendant 1h environ pour le ramollir ainsi que
les accessoires de l'essai (moule bien enduit de vaseline).
 Exécution de l’essai
1 2 3
4 5
1. Echantillon homogène préparé.
2. Peser et introduire une quantité m environ 1200g dans le moule après avoir placé un disque de
papier en fond de ce dernier, et l'avoir enduit légèrement et mis en place la hausse. Un disque de
papier est placé au dessus de la quantité. Ensuite l'éprouvette est immédiatement compactée en
appliquant 50 coups en 55s de marteau de la dame sur la face supérieure et vis versa pour la face
inférieure.
3. Après avoir refroidi l'éprouvette à jet d'eau froide circulaire sans la mouiller, conserver le moule
pendant 1h au moins à température ambiante et la démouler (le démoulage est effectué en faisant
passer l'éprouvette du moule dans la hausse à l'aide d'un piston extracteur). La masse volumique
apparente MVa est calculée à partir des mesures géométriques portées sur l'éprouvette à l’aide
d’un pied à coulisses.
4. Détermination de la masse puis son volume apparent par pesée hydrostatique sans paraffinage
de sa surface. En application de la loi d'Archimède, on déduit la masse volumique apparente de
l'éprouvette.
5. Conserver l'éprouvette 4h au moins à température ambiante, immerger l'éprouvette et la
mâchoire d'écrasement dans un bain marie à 60°C pendant 40mn sans dépasser 1h ; puis placer
l'éprouvette dans la mâchoire et porter l'ensemble entre les plateaux de la presse ; d'où elle sera
soumise à l'effort de compression à une vitesse de déformation de 50mm/mn. On lit les valeurs de
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 22
S enregistré et F à l’aide du comparateur.
Les feuilles d’essais en annexe12, l’analyse et l’interprétation des résultats au chapitre III.
II.A.5.4 Essai Duriez
a) But
L’essai permet de déterminer pour une température et un compactage donnés, la tenue à l’eau
d’un mélange hydrocarboné à chaud à partir du rapport des résistances à la compression avec et
sans immersion des éprouvettes.
b) Principe
Les éprouvettes nécessaires à la réalisation de l’essai sont fabriquées par compactage
statique à double effet. Deux éprouvettes sont destinées à la mesure de la masse volumique par
pesée hydrostatique, pour calculer le pourcentage de vide. Les autres éprouvettes sont soumises à
l’essai de compression après conservation dans des conditions définies ; à l’air pour
certaines éprouvettes et à l’immersion pour d’autres.
c) Matériel nécessaire
une balance munie d’un crochet pour pesée hydrostatique
une étuve
 un malaxeur
Un moule Duriez +entonnoir+piston extracteur+truelle
un bain thermostatique
une enceinte climatique
une presse Duriez
d) Mode opératoire (NF P 98-251-1, NF P 98-250-1, NF P 98-250-6)
 Préparation de l’échantillon
L’enrobé provenant du malaxeur, dans un plat (+le moule enduit de vaseline) est mis à l'étuve
pour simuler le vieillissement à court terme.
Une fois la température atteinte, la durée du chauffage minimale est de 30 mn et ne doit jamais
excéder deux heures.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 23
 Exécution
3
4
1 2
5
1. Mise en place de l’enrobé homogène préparé d’environ 1Kg dans le moule à l’aide d’un
entonnoir. Dans le moule l’enrobé est encadré par deux disques de papier comme pour l’essai
Marshall.
2. Puis on passe au compactage des éprouvettes par compactage statique à double effet sous
charge de 60KN atteint en moins de 60s et maintenu pendant 300s (D<14mm) à l’aide de la presse
Duriez.
On laisse refroidir par jet d’eau, puis on démoule. Par pesée simple et par mesure des 6 côtés
géométriques on peut déduire la masse volumique apparente MVa. Par pesée hydrostatique de 2
éprouvettes, on détermine la masse volumique apparente MVA.
3. Les 5 des 12 éprouvettes sont conservées à 180
C à l’air, leur masse est prise chaque jour.
4 .Les cinq autres sont conservées à 180
C en immersion dans l’eau.
5. Au bout de 8 jours (J+8), elles sont écrasées sous une presse Marshall (sans les mâchoires
d’écrasement) à vitesse de 1mm/s et on mesure la résistance à la rupture à la compression à « l’air
» et à « l’eau ».
NOTA : Dans notre cas on n’a utilisé que 10 éprouvettes. L’essai se pratique à 18 °C, il peut être
pratiqué à d’autres température 0 et 50 °C pour permettre d’appréhender une forme de
susceptibilité thermique du mélange hydrocarboné.
Les feuilles d’essais en annexe11, l’analyse et l’interprétation des résultats au chapitre III.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 24
II.B Chantier : Travaux de construction et de bitumage de la route RD 152
OUAGADOUGOU- NIOKO- SAABA y compris les bretelles d’accès au CSPS et à
l’université SAINT THOMAS D'AQUIN
II.B.1 Revêtement
II.B.1.1 Couche d’imprégnation
C'est une couche de protection qui repose sur la couche de base dont le rôle est de contribuer à
l'amélioration de la chaussée et renforce la protection mécanique, thermique et hydraulique par
imperméabilisation.
Elle est exécutée de la manière suivante : balayer la couche de base avec une balayeuse
mécanique complété au balai à la main de façon à éliminer les matériaux non solidaires et la
poussière résiduelle, arroser (légère humidification de la couche), enfin épandre uniformément le
bitume fluidifié (cut-back 0/1) à une température comprise entre 350
et 500
C.
La couche d’imprégnation est appliquée sur toute la largeur de la plateforme et pénètre de 1cm la
couche de base préalablement réceptionnée.
Arrosage à la citerne Imprégnation avec la bouille
II.B.1.2 Enduit superficiel
Structure et granularité
La chaussée étant à faible et moyen trafic, la structure est une bicouche composée d'une
couche de liant qui du bitume pur de classe 50/70 puis d'une couche de gravillons (10/14) suivie
par une couche de liant puis une couche de gravillons (6/10) et enfin on compacte.
Le choix de la granularité a été fonction de la structure et des objectifs visés : adhérence,
étanchéité, bruit de roulement : les petites granularités (6/10) sont plus favorables à la diminution
du bruit de roulement et à une meilleure adhérence à faible vitesse, les grosses granularités (10/14)
apportent une meilleure drainabilité. Ces granulats sont obtenus par concassage et criblage de
roches massives (granite) dans des carrières.
Mise en œuvre
Après un temps de séchage de 48 heures de la couche d’imprégnation, et un nettoyage
d’éventuelles ordures, le bitume et les gravillons sont respectivement mis en œuvre sur
toute la largeur de la plateforme par la bouille et le gravillonneur puis on compacte.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 25
Avant Après
Densitomètre
Epandage du gravillon Compactage faisant suite
faisant suite à l’épandage du liant. à l’épandage du gravillon.
Le compactage
Enfin les compacteurs interviennent pour assurer la mise en place des granulats et leur
enchâssement dans le film de bitume. Le compactage est la première des protections contre
l’agression de l’eau. Il est un objectif important pour la couche de roulement, évitant les désordres
sur les couches inférieures.
Diminution du volume V, Poids P constante, ῥ= P/V augmente
Tassement
II.B.2 Les contrôles préalables
II.B.2.1 Mesure de densité in-situ
a) Définition et but de l’essai
Le densitomètre à membrane est un appareil de mesure de la densité après compactage ; la
mesure de densité in-situ est une opération de contrôle du
compactage. Elle est relativement simple et s’effectue in situ sur
toutes les trois (03) couches de la chaussée (forme, fondation, base).
Le but de cette opération est la mesure des masses (poids)
volumiques (humides et sèche) des couches après leur compactage.
b) Principe de la méthode
L’opération consiste dans un premier temps, à creuser un trou
dans la couche dont on désire mesurer la densité et, de mesurer le
volume du trou à l’aide d’un densitomètre à membrane ; puis dans
un second temps à déterminer le poids humide et sec ; informations
à partir desquelles on déduit aisément la densité.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 26
c) Matériel nécessaire
trois (03) serres joints métallique de type crampon,
une truelle de maçon,
un marteau d’environ 1 kg pour fixer les serre-joints,
une tenaille pour les retirer,
un burin pour creuser le trou,
une louche de cuisine et cuillère de laboratoire et pinceau pour récupérer le matériau,
une règle graduée pour mesurer la profondeur du trou,
un seau avec couvercle,
une balance mécanique,
une bouteille de gaz butane + réchaud pour le séchage in-situ.
d) Mode opératoire
 Préparations précédant l’opération
Avant le début de l’opération, il convient de dresser soigneusement l’emplacement où l’on
désir effectuer la mesure. On pourrait se servir de la truelle de maçon.
Ensuite, il faudrait fixer la base amovible du densitomètre au moyen des serres joints de type
crampons.
Il faudrait aussi éliminer toutes les bulles d’air du densitomètre par le bouchon purgeur, bien sûr
après avoir vérifié la membrane et remplir l’appareil d’eau si nécessaire.
 Exécution de l’essai
Mettre l’appareil en place sur sa base amovible Une fois celle-ci fixée.
Appuyer sur la poigné jusqu’au refus : lorsqu’on exerce une pression sur la poignée, la membrane
se dilate et s’appuie sur la surface de la couche.
On lit alors un volume V1 sur la graduation volumétrique et on ôte l’appareil.
Creuser ensuite un trou à travers l’orifice et ayant un même diamètre et une profondeur d’environ
10cm.
Recueillir délicatement dans le seau la totalité des éléments extraits et le recouvrir.
Replacer l’appareil sur sa base amovible et appuyer de nouveau sur la poignée jusqu’au refus : la
membrane épouse parfaitement les dimensions du trou.
Lire enfin le volume V2 sur la graduation volumétrique
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
Pour plus de pragmatisme, la détermination de la teneur en eau du
n’est pas traitée au laboratoire mais sur place. Il est prévu à cet effet du gaz butane pour le
séchage.
II.B.2.2 Contrôle de l’épandeuse de bitumes fluidifié 0/1 et pur 50/70
Pour déterminer le dosage (taux d’épandage), le liant est recueilli dans des plaques
métalliques ou bacs de 20X25 que l’on dépose à chaque passage de la bouille pour recueillir le
bitume. Après avoir déterminé le poids du liant Pb dans le bac en tarant la balance, conn
surface de la plaque on déduit la quantité en mètre carré (Kg/m
formule : Pb/ (20X25).
II.B.2.3 Contrôle de l’épandeuse de gravillons
Pour déterminer le dosage (taux d’épandage), les gravillons son
boîte étalonnée, parallélépipédique
d’une face transparente ou boîte doseuse placée sur la route devant gravillonneur, en vue de
la détermination du taux d’épandage.
pour recueillir les gravillons d’une surface connue. Une fois leur couvercle remis en place, la
boîte est redressée verticalement et sert ensuite à mesurer directement le volume
(l/m2
) de gravillons recueillis.
L’analyse et l’interprétation des résultats au chapitre III.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
Pour plus de pragmatisme, la détermination de la teneur en eau du matériau recueilli dans le trou
n’est pas traitée au laboratoire mais sur place. Il est prévu à cet effet du gaz butane pour le
Contrôle de l’épandeuse de bitumes fluidifié 0/1 et pur 50/70
le dosage (taux d’épandage), le liant est recueilli dans des plaques
que l’on dépose à chaque passage de la bouille pour recueillir le
bitume. Après avoir déterminé le poids du liant Pb dans le bac en tarant la balance, conn
surface de la plaque on déduit la quantité en mètre carré (Kg/m2
) i.e. le taux de bitume par la
Contrôle de l’épandeuse de gravillons
Pour déterminer le dosage (taux d’épandage), les gravillons sont recueil
boîte étalonnée, parallélépipédique de 80cmx25cmx4cm, munie d’un couvercle coulissant et
ou boîte doseuse placée sur la route devant gravillonneur, en vue de
la détermination du taux d’épandage. Posée à plat avec un couvercle retiré, la boîte sert de bac
pour recueillir les gravillons d’une surface connue. Une fois leur couvercle remis en place, la
boîte est redressée verticalement et sert ensuite à mesurer directement le volume
analyse et l’interprétation des résultats au chapitre III.
27
matériau recueilli dans le trou
n’est pas traitée au laboratoire mais sur place. Il est prévu à cet effet du gaz butane pour le
le dosage (taux d’épandage), le liant est recueilli dans des plaques
que l’on dépose à chaque passage de la bouille pour recueillir le
bitume. Après avoir déterminé le poids du liant Pb dans le bac en tarant la balance, connaissant la
) i.e. le taux de bitume par la
t recueillis dans une
de 80cmx25cmx4cm, munie d’un couvercle coulissant et
ou boîte doseuse placée sur la route devant gravillonneur, en vue de
Posée à plat avec un couvercle retiré, la boîte sert de bac
pour recueillir les gravillons d’une surface connue. Une fois leur couvercle remis en place, la
boîte est redressée verticalement et sert ensuite à mesurer directement le volume surfacique
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 28
Tableau des
dosages du CCTP
Plaque doseuse Pesage mécanique Boîte doseuse
Revêtement 1ère
couche 2è
couche
Classes granulaires 10/14 6/10
Dosages :
 Bitume pur 50/70(Kg/m2
) 0,8 1,1
 Granulats (l/m2
) 10,5 7,5
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
II.C Département sol et fondation
II.C.1 Essai de cisaillent direct non drainé non consolidé sur sol argileux
a) But et définition
Cet essai détermine les paramètres de résistance au cisaillement ‘cohésion et l’angle de
frottement) qui permettent d’estimer la contrainte de rupture d’un matériau utile pour les études de
stabilité de terrain (talus, fondation su
toujours par cisaillement. On reproduit le phénomène au laboratoire.
On impose une contrainte normale (σ) puis on cisaille le sol. La valeur de τlim au del
laquelle il ya glissement entre le terrain et la semelle est déterminé, par la suite l’angle de
frottement) en traçant une courbe.
Un sol sec déversé d’une certaine hauteur forme un tas dont la pente ne peut pas dépasser une
certaine valeur ϕ : c’est angle de frottement interne du sol.
b) Matériel nécessaire
une machine de cisaillement +chronomètre
une boîte de Casagrande
une série de poids
une trousse coupante (anneau, couteaux divers)
un comparateur Anneau dyn. 3 kN
c) Principe
L'essai s'effectue sur une éprouvette de sol placée dans une boîte de cisaillement constituée de
deux demi-boîtes indépendantes. Le plan de séparation des deux demi
glissement correspondant au plan de cisaillement de l'éprouvette. Il consiste à appliquer sur la face
supérieure de l'éprouvette un effort normal de compression N, verticalement, par l’intermédiaire
d’un piston et un effort tranchant
comparateur mesure le déplacement relatif de l’échantillon.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
Département sol et fondation
Essai de cisaillent direct non drainé non consolidé sur sol argileux
Cet essai détermine les paramètres de résistance au cisaillement ‘cohésion et l’angle de
frottement) qui permettent d’estimer la contrainte de rupture d’un matériau utile pour les études de
stabilité de terrain (talus, fondation superficielle et profonde). La rupture d'une fondation se fait
toujours par cisaillement. On reproduit le phénomène au laboratoire.
On impose une contrainte normale (σ) puis on cisaille le sol. La valeur de τlim au del
laquelle il ya glissement entre le terrain et la semelle est déterminé, par la suite l’angle de
frottement) en traçant une courbe.
taine hauteur forme un tas dont la pente ne peut pas dépasser une
: c’est angle de frottement interne du sol.
une machine de cisaillement +chronomètre
coupante (anneau, couteaux divers)
un comparateur Anneau dyn. 3 kN
L'essai s'effectue sur une éprouvette de sol placée dans une boîte de cisaillement constituée de
boîtes indépendantes. Le plan de séparation des deux demi-boîtes constitue un plan de
glissement correspondant au plan de cisaillement de l'éprouvette. Il consiste à appliquer sur la face
supérieure de l'éprouvette un effort normal de compression N, verticalement, par l’intermédiaire
d’un piston et un effort tranchant T, horizontalement, en déplaçant la demi
comparateur mesure le déplacement relatif de l’échantillon.
29
Cet essai détermine les paramètres de résistance au cisaillement ‘cohésion et l’angle de
frottement) qui permettent d’estimer la contrainte de rupture d’un matériau utile pour les études de
perficielle et profonde). La rupture d'une fondation se fait
On impose une contrainte normale (σ) puis on cisaille le sol. La valeur de τlim au delà de
laquelle il ya glissement entre le terrain et la semelle est déterminé, par la suite l’angle de
taine hauteur forme un tas dont la pente ne peut pas dépasser une
L'essai s'effectue sur une éprouvette de sol placée dans une boîte de cisaillement constituée de
s constitue un plan de
glissement correspondant au plan de cisaillement de l'éprouvette. Il consiste à appliquer sur la face
supérieure de l'éprouvette un effort normal de compression N, verticalement, par l’intermédiaire
T, horizontalement, en déplaçant la demi-boîte inférieure. Un
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 30
d) Mode opératoire (NF P94-071-1)
 Préparation de l’échantillon
L’éprouvette est taillée dans des carottes soigneusement prélevées sur le site à l’aide d’une
meule huilée ayant les mêmes dimensions que la boîte de Casagrande.
Dans la boîte, les pierres poreuses ou plaques drainantes sont saturées avec de l’eau, l’éprouvette
est encadrée par deux disques de papier filtre empêchant les particules fines de migrer vers les
pores des pierres poreuses. L’ensemble est immergé dans l’eau 3 à 7jours pour la saturation.
 Exécution de l’essai
A la machine, l’éprouvette ne subit aucune consolidation, aucun drainage préalable, sous la
contrainte normale σ de l’essai. Le piston est sollicité par un levier chargé par des poids de
manière à exercer la contrainte normale σ constante.
L'effort de cisaillement T (provoquant la contrainte de cisaillement τ croissant jusqu'à la
rupture) est exercé par une presse horizontale à vitesse de déplacement constante. Il est lu au
moyen d'un anneau dynamométrique. Lire à chaque 15s le déplacement relatif horizontal sur le
comparateur.
NOTA: L’essai est réalisé avec trois boîtes de cisaillement identiques respectivement aux
contraintes normales 0,5bar, 1 bar, 2 bar.
On détermine également les teneurs en eau avant et après essai et la masse volumique par pesée
hydrostatique par paraffinage.
Les feuilles d’essais en annexe17, l’analyse et l’interprétation des résultats au chapitre III.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
II.C.2 Essai œdométrique NF P 94
a) But et définition de l’essai
La manipulation a pour but de déterminer les caractéristiques de
compressibilité d’un sol qui permettent d’estimer le tassement provoqué
par consolidation d’un massif de sol, par exemple sous une fondation
superficielle.
NOTA : Sous l’effet des charges appliquées, le sol va se déformer : il va
subir un tassement. Pour en évaluer l’ampleur on reproduit le
phénomène au laboratoire. Les sols présentant de forts
tassements sont les sols saturés, les contraintes s’appliquen
d’abord à l’eau puis après dissipation des surpressions, au
squelette solide. C’est le phénomène de consolidation.
b) Matériel nécessaire
une balance 1610g+-0,1g
une étuve
un oedomètre
une série de poids fendiés
un comparateur
c) Principe
Le sol est placé dans une enveloppe rigide, on exerce sur sa partie supérieure une pression
variable à l’aide d’un piston et on mesure les affaissements observés après stabilisation. On
détermine ainsi la relation entre les contraintes effectives e
d) Mode opératoire
Préparation de l’échantillon est la même que l’essai précédent
 Exécution de l’essai
Un piston permet d'appliquer sur l'échantillon une contrainte
verticale uniforme constante pendant un temps déterminé.
On mesure alors la variation de hauteur de l’éprouvette de sol en fonction de la contrainte
appliquée. On commence par charger le piston à vide
en soustrayant 60 pour avoir 20kg, puis on va directement à 5kg et enfin on décharge totalement
jusqu’au piston à vide. On détermine également les teneurs en eau avant et après essai et la masse
volumique comme dans l’essai précédent.
NOTA: A chaque palier ou chargement, il faut attendre la stabilisation de tassement par
dissipation de la pression interstitielle avant de procéder à la lecture. C’est pourquoi dans notre cas
on effectue le chargement à chaque 24h après avoir lu le tassement pr
Les feuilles d’essai en annexe18, l’analyse et l’interprétation des résultats au chapitre III.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
ométrique NF P 94-090-1
La manipulation a pour but de déterminer les caractéristiques de
compressibilité d’un sol qui permettent d’estimer le tassement provoqué
par consolidation d’un massif de sol, par exemple sous une fondation
: Sous l’effet des charges appliquées, le sol va se déformer : il va
subir un tassement. Pour en évaluer l’ampleur on reproduit le
phénomène au laboratoire. Les sols présentant de forts
tassements sont les sols saturés, les contraintes s’appliquent
d’abord à l’eau puis après dissipation des surpressions, au
squelette solide. C’est le phénomène de consolidation.
0,1g
une série de poids fendiés
Le sol est placé dans une enveloppe rigide, on exerce sur sa partie supérieure une pression
variable à l’aide d’un piston et on mesure les affaissements observés après stabilisation. On
détermine ainsi la relation entre les contraintes effectives et les déformations verticales.
Préparation de l’échantillon est la même que l’essai précédent.
Un piston permet d'appliquer sur l'échantillon une contrainte
verticale uniforme constante pendant un temps déterminé.
On mesure alors la variation de hauteur de l’éprouvette de sol en fonction de la contrainte
ar charger le piston à vide 2kg puis 5, 10, 20, 40,80
pour avoir 20kg, puis on va directement à 5kg et enfin on décharge totalement
jusqu’au piston à vide. On détermine également les teneurs en eau avant et après essai et la masse
volumique comme dans l’essai précédent.
A chaque palier ou chargement, il faut attendre la stabilisation de tassement par
dissipation de la pression interstitielle avant de procéder à la lecture. C’est pourquoi dans notre cas
on effectue le chargement à chaque 24h après avoir lu le tassement pr
, l’analyse et l’interprétation des résultats au chapitre III.
31
Le sol est placé dans une enveloppe rigide, on exerce sur sa partie supérieure une pression
variable à l’aide d’un piston et on mesure les affaissements observés après stabilisation. On
t les déformations verticales.
On mesure alors la variation de hauteur de l’éprouvette de sol en fonction de la contrainte
, 10, 20, 40,80kg et on décharge
pour avoir 20kg, puis on va directement à 5kg et enfin on décharge totalement
jusqu’au piston à vide. On détermine également les teneurs en eau avant et après essai et la masse
A chaque palier ou chargement, il faut attendre la stabilisation de tassement par
dissipation de la pression interstitielle avant de procéder à la lecture. C’est pourquoi dans notre cas
on effectue le chargement à chaque 24h après avoir lu le tassement précédent.
, l’analyse et l’interprétation des résultats au chapitre III.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
II.C.3 Essai pénétrométrique (NF P 94
a) But
Le pénétromètre dynamique est un moyen simple, rapide et économique d’investigation des
sols in situ. Il permet :
d’apprécier de façon qualitative la résistance des terrains traversés, et de prévoir la
réaction du sol à l’enfoncement de pieux.
de déterminer l’épaisseur et la profondeur des différentes couches de sol.
d’effectuer des contrôles de
d’estimer une caractéristique de portance, la « résistance dynamique de pointe » pour les
essais.
b) Principe de l’essai
On enfonce dans le sol par battage, un train de tiges de faible diamètre muni à son extrémité
d’une pointe perdue, et on mesure le nombre de coups N nécessaires pour obtenir un enfoncement
donné.
c) Mode opératoire
 Préparation des échantillons pour essais
Pour avoir des résultats représentatifs du sol vierge, on doit s’assurer que le terrain n’a pas
été perturbé au préalable au droit du sondage. Sur un site où un grand nombre de
effectués afin d’établir les coupes géologiques. L’axe des sondages est perp
essais de pénétration.
 Exécution de l’essai
 Mettre en place la pointe au pied de la
1ere tige et assembler l’enclume + tige
guide mouton
 Enfoncer la pointe dans le sol
Avec une énergie dynamique constante
(mouton de 70Kg tombant d’une hauteur
constante de 20 cm), on compte le
nombre de coups nécessaires pour
enfoncer verticalement le train de tiges
jusqu’à une profondeur de 20 cm.
Renseignez la fiche de sondage
fournie.
Poursuivre l’essai jusqu’au refus en
ajoutant les tiges nécessaires.
 Retirer l’ensemble du matériel du terrain !(En cas d’extraction diffic
mécanique avec douille de serrage est disponible).
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
Essai pénétrométrique (NF P 94-115)
Le pénétromètre dynamique est un moyen simple, rapide et économique d’investigation des
d’apprécier de façon qualitative la résistance des terrains traversés, et de prévoir la
réaction du sol à l’enfoncement de pieux.
de déterminer l’épaisseur et la profondeur des différentes couches de sol.
d’effectuer des contrôles de compactage
d’estimer une caractéristique de portance, la « résistance dynamique de pointe » pour les
r battage, un train de tiges de faible diamètre muni à son extrémité
d’une pointe perdue, et on mesure le nombre de coups N nécessaires pour obtenir un enfoncement
Préparation des échantillons pour essais
s résultats représentatifs du sol vierge, on doit s’assurer que le terrain n’a pas
été perturbé au préalable au droit du sondage. Sur un site où un grand nombre de
effectués afin d’établir les coupes géologiques. L’axe des sondages est perpendiculaire à l’
Mettre en place la pointe au pied de la
1ere tige et assembler l’enclume + tige
guide mouton
nte dans le sol
Avec une énergie dynamique constante
(mouton de 70Kg tombant d’une hauteur
constante de 20 cm), on compte le
e coups nécessaires pour
enfoncer verticalement le train de tiges
jusqu’à une profondeur de 20 cm.
Renseignez la fiche de sondage
fournie.
Poursuivre l’essai jusqu’au refus en
ajoutant les tiges nécessaires.
Retirer l’ensemble du matériel du terrain !(En cas d’extraction difficile, un dispositif
mécanique avec douille de serrage est disponible).
32
Le pénétromètre dynamique est un moyen simple, rapide et économique d’investigation des
d’apprécier de façon qualitative la résistance des terrains traversés, et de prévoir la
de déterminer l’épaisseur et la profondeur des différentes couches de sol.
compactage
d’estimer une caractéristique de portance, la « résistance dynamique de pointe » pour les
r battage, un train de tiges de faible diamètre muni à son extrémité
d’une pointe perdue, et on mesure le nombre de coups N nécessaires pour obtenir un enfoncement
s résultats représentatifs du sol vierge, on doit s’assurer que le terrain n’a pas
été perturbé au préalable au droit du sondage. Sur un site où un grand nombre de sondages sont
endiculaire à l’axe des
guide mouton
nte dans le sol
jusqu’à une profondeur de 20 cm.
ile, un dispositif
mécanique avec douille de serrage est disponible).
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 33
II.D Département structure
II.D.1 Etude et fabrication du béton au labo ou in situ
Le béton a été formulé théoriquement par la méthode de Dreux-Gorisse pour un affaissement
de 5+-1cm. Le dosage est le suivant 84,16Kg de quartz, 50,89Kg de sable 30Kg de ciment
CPA45 et 10,29l d’eau.
En pratique, l’ensemble est introduit dans la bétonnière dans l’ordre suivant : sable étalé,
quartz et ajout progressif des 10,29l d’eau grâce à une éprouvette de 100 ml afin d’homogénéiser
et fluidifier le mélange.
Un premier essai au cône d’Abrams a donné A=1cm, le dosage a été corrigé en ajoutant 8l
d’eau de gâchage pour avoir l’affaissement (5,2cm) escompté.
Puis on procède au moulage en huilant le moule cylindrique pour faciliter le démoulage. On
remplit le moule en deux couches par piquage (25 coups/couche) avec la tige du cône et les
marqué.
Après un temps de consolidation de 24h les 9 éprouvettes sont démoulées et passées dans un
bain maintenu à 25° C (l’eau jouant le rôle de cohésion) jusqu’aux jours (3,7, 28 jours d’âge) de
l’écrasement sorties de l’eau quelques heures avant.
II.D.2 Essai d’affaissement au cône d’Abrams
a) Principe et but de l’essai
L’essai consiste à mouler des troncs de cône en béton (base de diamètre 20 cm, partie haute de
diamètre 10cm) pour mesurer la valeur de l’affaissement A en cm et conclure sur la classe S
d’affaissement du béton.
b) Matériel nécessaire
un moule + tige de piquage+ embase
un entonnoir
un portique de mesure+truelle
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 34
c) Mode opératoire (NF EN 12350-2 et NF P 18-451)
Entonnoir Tige de piquage Ǿ16
Bras de mesure
A
Béton
1 2 3 4
Moule tronconique Plaque d’appui
Après avoir huiler le moule puis humidifier la plaque, on procède comme suit :
1. Mise en place par piquetage (25 coups X 3) en trois couches au plus tard 2mn après l’arrêt du
malaxage
2.Arasement en faisant rouler la tige
3. Soulèvement délicat du moule tronconique
4. Mesure de l’affaissement A
Les feuilles d’essais en annexe15, l’analyse et l’interprétation des résultats au chapitre III.
II.C.3 Essai de compression
a) But
Cet essai a pour but le contrôle de la qualité du béton durci. Il s’agit des essais les plus courants.
b) Matériel nécessaire
un bac de conservation
Souffre
un appareil de surfaçage
une balance mécanique de 100 Kg
une presse à béton
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 35
c) Mode opératoire (NF P 18-406)
F
Zones de frettage
Cylindres16X32
15X30 25X50 F
Provenant de moulage ou de carottage in situ, conservées dans l’eau à 250
C, les éprouvettes
cylindriques sont essuyées et pesées, et leurs extrémités sont rectifiées (surfaçage à l’aide de 60%
de souffre + 40% de sable fin+l’huile).
Centrées sur une machine d’essai étalonnée appelée presse de compression, elles sont soumises à
une charge croissante appliquée jusqu’à rupture à une vitesse constante.
On mesure généralement à 3 jours, 7 jours et 28 jours la résistance à la compression qui est le
rapport entre la charge maximale appliquée et la surface 20 de l’éprouvette : Fi /20 et on prend la
moyenne. Ainsi on détermine la classe de ce béton.
La feuille d’essai en annexe15, l’analyse et l’interprétation des résultats au chapitre III.
II.C.4 Essai de densité apparente des gravillons et sables
a) Définition
La densité apparente est le rapport entre la masse du matériau et le volume du cube qu’il
occupe. En pratique elle est obtenue en faisant la moyenne de trois essais.
b) Matériel nécessaire
une balance de précision
un moule cubique+ bac de réception+plat
une règle à araser
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
d) Mode opératoire (NF P 18-554/555)
1
Cube de 10,2l
1. La prise d’essai est versée à un débit constant dans un cube de 10200 cm
2000g à l’aide d’un plat placé à une hauteur de 1m avec les mains comme entonnoir au dessus du
moule.
2. Le surplus de matériau est arasé à l’aide d’une règle et le cube avec le matériau est pesé.
NOTA : Dans le cas du ciment il s’agit du même essai mais à l’aide d’un entonnoir plac
au dessus d’un moule de 1l de volume.
La feuille d’essai en annexe14, l’analyse et l’interprétation des résultats au
II.C.5 Essai Micro-Deval à eau
a) But et définition
Par définition, le coefficient Micro
la masse du passant au tamis de 1,6 mm de l' échantillon après
passage en machine sur la masse initiale.
Le but de l’essai est la mesure de la résistance à l’usure produite pour
certaines roches car elle n’est pas la même à sec ou en présence d’eau.
b) Principe de la méthode
L’essai Micro-Deval à eau (MD
dans un cylindre en rotation, en présence d’eau par frottement entre les granulats d’un échantillon
et une charge abrasive. La masse de la charge abrasive varie suivant les classes granulaires.
Le degré d’usure est apprécié par détermi
généré au cours de l’essai conformément à la norme NF P 18
c) Matériel nécessaire
un appareil Micro-Deval
des billes de 10mm +-0,5 de diamètre
un jeu de tamis 1,6-4-6,3-
une étuve
une balance de précision
un bac ou un plat
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
554/555)
1 2
Règle à araser
Cube de 10,2l
1. La prise d’essai est versée à un débit constant dans un cube de 10200 cm3
é à une hauteur de 1m avec les mains comme entonnoir au dessus du
2. Le surplus de matériau est arasé à l’aide d’une règle et le cube avec le matériau est pesé.
: Dans le cas du ciment il s’agit du même essai mais à l’aide d’un entonnoir plac
au dessus d’un moule de 1l de volume.
La feuille d’essai en annexe14, l’analyse et l’interprétation des résultats au chapitre III.
à eau
Par définition, le coefficient Micro-Deval à eau est le rapport entre
la masse du passant au tamis de 1,6 mm de l' échantillon après
passage en machine sur la masse initiale.
Le but de l’essai est la mesure de la résistance à l’usure produite pour
certaines roches car elle n’est pas la même à sec ou en présence d’eau.
(MDE) est destiné à appréhender la résistance
dans un cylindre en rotation, en présence d’eau par frottement entre les granulats d’un échantillon
et une charge abrasive. La masse de la charge abrasive varie suivant les classes granulaires.
Le degré d’usure est apprécié par détermination de proportion d’éléments fins, inférieurs à 1,6 mm
généré au cours de l’essai conformément à la norme NF P 18-572.
Deval
0,5 de diamètre
-10-14mm (2 tamis correspondant à la classe granulaire étudiée)
une balance de précision
36
Cube de 10,2l
de volume, de masse
é à une hauteur de 1m avec les mains comme entonnoir au dessus du
2. Le surplus de matériau est arasé à l’aide d’une règle et le cube avec le matériau est pesé.
: Dans le cas du ciment il s’agit du même essai mais à l’aide d’un entonnoir placé à 10cm
chapitre III.
à l’usure produite
dans un cylindre en rotation, en présence d’eau par frottement entre les granulats d’un échantillon
et une charge abrasive. La masse de la charge abrasive varie suivant les classes granulaires.
nation de proportion d’éléments fins, inférieurs à 1,6 mm
spondant à la classe granulaire étudiée)
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
d) Mode opératoire
 Préparation de l’échantillon
L’échantillon est tamisé, lavé et séché à 105
10/14 et on prend une masse de prise d’essai de 500g par pesage.
 Exécution de l’essai
1 Tambour 2 Appareil Micro
1. Mise en place dans le tambour de
2.Appliquer une rotation de 12000 tours au ta
100 tours/mn en 2h.
3. Retirer la prise d’essai pour lavage au dessus d’u
l’aide d’un aimant.
4. Etuvage du refus à 1050
C
5.Pesage du refus (m’en g). Le passant au tamis de 1,6mm sera alors m=500
La feuille d’essai en annexe13, l’
II.C.6 Essai Los Angeles
a) But et définition
Par définition, le coefficient Los Angeles est le rapport entre la
fraction passante au tamis de 1,6 mm de l' échantillon après passage en
machine sur la masse initiale.
Cet essai a pour but de mesurer la résistance
par chocs des éléments d’un échantillon de granulats dont leur propriété
pourrait être modifiées lors du malaxage ou le transport en camion.
b) Principe
Le principe de la méthode consiste à mesurer la quantité d' éléments inférieurs à 1,6
mm produite par fragmentation, en soumettant le matériau à des chocs de boulets à l' intérieur d'
un cylindre en rotation.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF
Préparation de l’échantillon
L’échantillon est tamisé, lavé et séché à 1050
C sur les tamis de la classe granu
10/14 et on prend une masse de prise d’essai de 500g par pesage.
Tambour 2 Appareil Micro-Deval 3 4 5
place dans le tambour de : 5kg de billes métalliques calibrées+500g+2,5l d’eau
2.Appliquer une rotation de 12000 tours au tambour hermétiquement fermé par des vis à la vitesse
100 tours/mn en 2h.
3. Retirer la prise d’essai pour lavage au dessus d’un tamis de 1,6mm, les billes sont retirées à
l’aide d’un aimant.
C
5.Pesage du refus (m’en g). Le passant au tamis de 1,6mm sera alors m=500-m’
La feuille d’essai en annexe13, l’analyse et l’interprétation des résultats au chapitre III.
Par définition, le coefficient Los Angeles est le rapport entre la
fraction passante au tamis de 1,6 mm de l' échantillon après passage en
Cet essai a pour but de mesurer la résistance à la fragmentation
par chocs des éléments d’un échantillon de granulats dont leur propriété
pourrait être modifiées lors du malaxage ou le transport en camion.
Le principe de la méthode consiste à mesurer la quantité d' éléments inférieurs à 1,6
mm produite par fragmentation, en soumettant le matériau à des chocs de boulets à l' intérieur d'
37
C sur les tamis de la classe granulaire choisie
Deval 3 4 5
: 5kg de billes métalliques calibrées+500g+2,5l d’eau
mbour hermétiquement fermé par des vis à la vitesse
100 tours/mn en 2h.
n tamis de 1,6mm, les billes sont retirées à
l’aide d’un aimant.
m’
chapitre III.
Le principe de la méthode consiste à mesurer la quantité d' éléments inférieurs à 1,6
mm produite par fragmentation, en soumettant le matériau à des chocs de boulets à l' intérieur d'
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 38
c) Matériel nécessaire
un appareil Los Angeles
un jeu de tamis 4-6 ; 10-14 ; 15-16 ; 25-31,5 ou encore série de 2 tamis correspondant au
borne de la classe granulaire étudier (exemple : si classe granulaire 10/14 alors tamis
de 10 et 14 mm seront nécessaires),
une étuve (105 ° C ± 5 °),
une machine Los Angeles,
 un bac destiné à recueillir les matériaux,
un tamis de 1,6 mm,
 une balance de précision 1 g,
7 à 12 boulets selon la granulométrie (sphère de diamètre 47 mm d' un poids
compris entre 420 et 445 g).
d) Mode opératoire (NF P 18-573)
 Préparation de l’échantillon
Tamiser l’échantillon lavé et séché à 1050
C sur les tamis de la classe granulaire choisie 10/14
puis prendre une masse de prise d’essai de 5 kg par pesage.
 Exécution de l’essai
1 2 3 4
1. Dans la machine Los Angeles, introduire avec précaution et dans l’ordre, la charge de
boulets de la classe granulaire choisie puis la prise d' essai M = 5 000 g.
Après la rotation de la machine à 500tours/mn en 15 mn, recueillir le granulat dans le bac.
2. Tamiser le matériau contenu dans le bac sur le tamis de 1,6 mm, le matériau étant pris en
plusieurs fois afin de faciliter l’opération et laver le refus au tamis de 1,6 mm.
3 .Egoutter et sécher à l’étuve à 105 ° C jusqu’à masse constante.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 39
4. Pesé ce refus une fois séché. Soit m le résultat de la pesée. Le passant au tamis de 1,6 mm sera
alors P = 5000 – m
La feuille d’essai en annexe13, l’analyse et l’interprétation des résultats au chapitre III.
II.C.7 Essai de traction de l’acier
a) But
Cet essai a pour but de contrôler la qualité des aciers. Il met en évidence les domaines
élastique et plastique de la loi de comportement d’un acier et permet déterminer les états de
contraintes et de déformations élastiques dans un acier de dimensions constantes ou variables dans
le cas de la traction simple.
b) Matériel nécessaire
une machine d’essai de traction
un comparateur collé sur les éprouvettes
un pied à coulisse + décamètre
d) Mode opératoire
On mesure d’abord les dimensions de l’éprouvette : sa longueur, sa masse, son diamètre
moyen de l’éprouvette en faisant la moyenne de trois mesures de diamètre (aux deux extrémités et
au milieu) à l’aide du pied à coulisse.
L’appareil mis en marche avec la barre accrochée entre ces deux pistons, l’aiguille qui
relève la résistance en fonction du temps s’est arrêtée une première fois, la 1ère
lecture (début de
comportement plastique) est effectuée puis la 2nde
lecture (la force de rupture de l’acier) au 2ème
arrêt de l’aiguille.
La feuille d’essai en annexe16, l’analyse et l’interprétation des résultats au chapitre III.
Les essais géotechniques en laboratoire et in situ
Wendyam Arsène Flavien DAMIBA: ENSIF 40
Chapitre III : Analyse et interprétation des résultats obtenus
NB : Les feuilles de calculs sont en annexe I, s’y reporté pour définition ou plus compréhension.
III.1 Paramètres similaires
a) Teneur en eau
L’analyse de certains essais nécessite des données non seulement sur l’échantillon
humide mais aussi sur le même échantillon à teneur en eau nulle. Plusieurs des essais
réalisés sont nécessité le passage à l’étuve pour la détermination de la teneur en eau
Il est question dans un premier temps de déterminer une masse totale humide Mth ; puis dans un
second temps une masse totale sèche Mts après séchage.
On détermine alors la masse de l’eau (Mω) : Mω=Mh-Ms
Puis, connaissant la masse de la tare (Mtare), on détermine la masse du matériau sec
(Ms) : Ms=Mts-Mtare
Enfin la teneur en eau (ω) : ω =100* Mω/Ms
b) Densité
Connaissant le volume V du moule CBR ou du trou de densité en plus des masses Mh et
Ms, on détermine la densité.
Densité humide (γh) : γh=Mh/V
Densité apparente (γd) : γd=Mh/ (1+ ω)*V
III.2 Analyse granulométrique (essai d’identification)
Avec la masse total (Mtot) et la masse des refus cumulés (Mcum) correspondant à chaque
tamis de module AFNOR défini, on détermine :
Pourcentage des refus cumulés %refus= Mtot/ Mcum
Pourcentage des passants %passant=100-%refus
Ces précédents résultats serviront à tracer la courbe granulométrique représentant le
pourcentage des passants cumulés en fonction des ouvertures des tamis en diagramme semi
logarithmique.
Par tamisage
La courbe est étalée et continue.
Notre courbe nous à donné les valeurs suivantes en terme de pourcentage: 12% de sable et 70% de
grave. On en déduit le nom du sol Grave un peu sableux.
Par tamisage à sec après lavage cas du sable
D’après la courbe, nous avons 89% de sable, 11% de grave donc le nom du sol est : Sable un peu
graveleux.
D10, D30, D60 représentent respectivement les diamètres des éléments correspondant à 10%,
30%, 60% de tamisât cumulé. D10=0,2 D30=0,3 D60=0,7
Cu=D60/D10 Cc=(D30)2
/ (D10*D30)
Mdf= (somme des refus cumulés en % des tamis 0,16-0,315-0,63-1,25-2,5-5)/100
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ
Les essais geotechniques en laboratoire et in situ

Más contenido relacionado

La actualidad más candente

03 fondations superficielles - solutionnaire (étudiants)
03   fondations superficielles - solutionnaire (étudiants)03   fondations superficielles - solutionnaire (étudiants)
03 fondations superficielles - solutionnaire (étudiants)Aissa Ouai
 
Caractéristiques géométriques des routes
Caractéristiques géométriques des routesCaractéristiques géométriques des routes
Caractéristiques géométriques des routesAdel Nehaoua
 
Calcul du ferraillage d'une poutre
Calcul du ferraillage d'une poutreCalcul du ferraillage d'une poutre
Calcul du ferraillage d'une poutreNassima Bougteb 🏗
 
Terrassement - calcul de volume
Terrassement - calcul de volume Terrassement - calcul de volume
Terrassement - calcul de volume Abdessadek ELASRI
 
Cubature et mouvement des terres
Cubature et mouvement des terresCubature et mouvement des terres
Cubature et mouvement des terresAdel Nehaoua
 
methodes-de-calcul-de-radiers
methodes-de-calcul-de-radiersmethodes-de-calcul-de-radiers
methodes-de-calcul-de-radiersAnas Tijani Modar
 
exemple-de-descente-de-charges
exemple-de-descente-de-chargesexemple-de-descente-de-charges
exemple-de-descente-de-chargesrabahrabah
 
exemple rapport de stage au Bureau d'etude BTP - télécharger : http://bit.ly/...
exemple rapport de stage au Bureau d'etude BTP - télécharger : http://bit.ly/...exemple rapport de stage au Bureau d'etude BTP - télécharger : http://bit.ly/...
exemple rapport de stage au Bureau d'etude BTP - télécharger : http://bit.ly/...Hani sami joga
 
Tps exercices corriges de mecanique des sols
Tps    exercices corriges de mecanique des solsTps    exercices corriges de mecanique des sols
Tps exercices corriges de mecanique des solsabdelkrim abdellaoui
 
Assainissement routier
Assainissement routierAssainissement routier
Assainissement routierAdel Nehaoua
 
Chap 6 c barrages en remblais
Chap 6 c barrages en remblaisChap 6 c barrages en remblais
Chap 6 c barrages en remblaisSouhila Benkaci
 
Etude de coffrage_et_de_ferraillage_des
Etude de coffrage_et_de_ferraillage_desEtude de coffrage_et_de_ferraillage_des
Etude de coffrage_et_de_ferraillage_desMohamed OULAHBIB
 
Cours route
Cours route Cours route
Cours route GENICIMO
 
Catalogue de dimensionnement des chaussees neuves (fascicule1)
Catalogue de dimensionnement des chaussees neuves (fascicule1)Catalogue de dimensionnement des chaussees neuves (fascicule1)
Catalogue de dimensionnement des chaussees neuves (fascicule1)Adel Nehaoua
 
Étude d’un ouvrage d’art sur Oued TENSIFT au PK 5+000 de la rocade de la vill...
Étude d’un ouvrage d’art sur Oued TENSIFT au PK 5+000 de la rocade de la vill...Étude d’un ouvrage d’art sur Oued TENSIFT au PK 5+000 de la rocade de la vill...
Étude d’un ouvrage d’art sur Oued TENSIFT au PK 5+000 de la rocade de la vill...Mohamed Berjal
 
Essai DURIEZ sur mélange hydrocarboné à chaud
Essai DURIEZ sur mélange hydrocarboné à chaud Essai DURIEZ sur mélange hydrocarboné à chaud
Essai DURIEZ sur mélange hydrocarboné à chaud OFPPT LAND
 
chapitre 3: Pont mixtes bipoutre
chapitre 3: Pont mixtes bipoutrechapitre 3: Pont mixtes bipoutre
chapitre 3: Pont mixtes bipoutreAdel Nehaoua
 

La actualidad más candente (20)

03 fondations superficielles - solutionnaire (étudiants)
03   fondations superficielles - solutionnaire (étudiants)03   fondations superficielles - solutionnaire (étudiants)
03 fondations superficielles - solutionnaire (étudiants)
 
GTR
GTRGTR
GTR
 
Caractéristiques géométriques des routes
Caractéristiques géométriques des routesCaractéristiques géométriques des routes
Caractéristiques géométriques des routes
 
Calcul du ferraillage d'une poutre
Calcul du ferraillage d'une poutreCalcul du ferraillage d'une poutre
Calcul du ferraillage d'une poutre
 
Terrassement - calcul de volume
Terrassement - calcul de volume Terrassement - calcul de volume
Terrassement - calcul de volume
 
Cubature et mouvement des terres
Cubature et mouvement des terresCubature et mouvement des terres
Cubature et mouvement des terres
 
PFE Genie civil
PFE Genie civil PFE Genie civil
PFE Genie civil
 
Fondation..
Fondation..Fondation..
Fondation..
 
methodes-de-calcul-de-radiers
methodes-de-calcul-de-radiersmethodes-de-calcul-de-radiers
methodes-de-calcul-de-radiers
 
exemple-de-descente-de-charges
exemple-de-descente-de-chargesexemple-de-descente-de-charges
exemple-de-descente-de-charges
 
exemple rapport de stage au Bureau d'etude BTP - télécharger : http://bit.ly/...
exemple rapport de stage au Bureau d'etude BTP - télécharger : http://bit.ly/...exemple rapport de stage au Bureau d'etude BTP - télécharger : http://bit.ly/...
exemple rapport de stage au Bureau d'etude BTP - télécharger : http://bit.ly/...
 
Tps exercices corriges de mecanique des sols
Tps    exercices corriges de mecanique des solsTps    exercices corriges de mecanique des sols
Tps exercices corriges de mecanique des sols
 
Assainissement routier
Assainissement routierAssainissement routier
Assainissement routier
 
Chap 6 c barrages en remblais
Chap 6 c barrages en remblaisChap 6 c barrages en remblais
Chap 6 c barrages en remblais
 
Etude de coffrage_et_de_ferraillage_des
Etude de coffrage_et_de_ferraillage_desEtude de coffrage_et_de_ferraillage_des
Etude de coffrage_et_de_ferraillage_des
 
Cours route
Cours route Cours route
Cours route
 
Catalogue de dimensionnement des chaussees neuves (fascicule1)
Catalogue de dimensionnement des chaussees neuves (fascicule1)Catalogue de dimensionnement des chaussees neuves (fascicule1)
Catalogue de dimensionnement des chaussees neuves (fascicule1)
 
Étude d’un ouvrage d’art sur Oued TENSIFT au PK 5+000 de la rocade de la vill...
Étude d’un ouvrage d’art sur Oued TENSIFT au PK 5+000 de la rocade de la vill...Étude d’un ouvrage d’art sur Oued TENSIFT au PK 5+000 de la rocade de la vill...
Étude d’un ouvrage d’art sur Oued TENSIFT au PK 5+000 de la rocade de la vill...
 
Essai DURIEZ sur mélange hydrocarboné à chaud
Essai DURIEZ sur mélange hydrocarboné à chaud Essai DURIEZ sur mélange hydrocarboné à chaud
Essai DURIEZ sur mélange hydrocarboné à chaud
 
chapitre 3: Pont mixtes bipoutre
chapitre 3: Pont mixtes bipoutrechapitre 3: Pont mixtes bipoutre
chapitre 3: Pont mixtes bipoutre
 

Similar a Les essais geotechniques en laboratoire et in situ

Rapport PFE Génie Electrique (2016)
Rapport PFE Génie Electrique (2016)Rapport PFE Génie Electrique (2016)
Rapport PFE Génie Electrique (2016)Mohsen Sadok
 
EPFL_TH4697.pdf
EPFL_TH4697.pdfEPFL_TH4697.pdf
EPFL_TH4697.pdfmido04
 
Enjeux et Défis de la surveillance des barrages au Cameroun
Enjeux et Défis de la surveillance des barrages au CamerounEnjeux et Défis de la surveillance des barrages au Cameroun
Enjeux et Défis de la surveillance des barrages au CamerounSergeRaymondMEYEANGO
 
Mémoire charafa olahanmi Licence Professionnelle en Hydraulique
Mémoire charafa olahanmi Licence Professionnelle en HydrauliqueMémoire charafa olahanmi Licence Professionnelle en Hydraulique
Mémoire charafa olahanmi Licence Professionnelle en HydrauliqueCharafa Olahanmi
 
Mon mémoire de fin d'étude(2012-2013)
Mon mémoire de fin d'étude(2012-2013)Mon mémoire de fin d'étude(2012-2013)
Mon mémoire de fin d'étude(2012-2013)David Sar
 
Traitement de l'air-intérieur - performance et innocuite systemes et matériau...
Traitement de l'air-intérieur - performance et innocuite systemes et matériau...Traitement de l'air-intérieur - performance et innocuite systemes et matériau...
Traitement de l'air-intérieur - performance et innocuite systemes et matériau...Build Green
 
BMNW Rapport de stage 2015
BMNW Rapport de stage 2015BMNW Rapport de stage 2015
BMNW Rapport de stage 2015Nurwazni Mazlan
 
400287113-rapport-pfe-fst-version3-1-docx.docx
400287113-rapport-pfe-fst-version3-1-docx.docx400287113-rapport-pfe-fst-version3-1-docx.docx
400287113-rapport-pfe-fst-version3-1-docx.docxHamadFach
 
GCI-I5 (MENG Try)
GCI-I5 (MENG Try)GCI-I5 (MENG Try)
GCI-I5 (MENG Try)meng try
 
mon mémoire_finale_samedi_matin_article(2).p df-1
mon mémoire_finale_samedi_matin_article(2).p df-1mon mémoire_finale_samedi_matin_article(2).p df-1
mon mémoire_finale_samedi_matin_article(2).p df-1Abdallah Darkawi
 
Rapport geotechnique apd
Rapport geotechnique apdRapport geotechnique apd
Rapport geotechnique apdOmar Guemira
 
1995 th hu_c_ns18476
1995 th hu_c_ns184761995 th hu_c_ns18476
1995 th hu_c_ns18476Aissa Ouai
 
Rapport-Stage-professionnel-BENDAOU-Mourad_revise
Rapport-Stage-professionnel-BENDAOU-Mourad_reviseRapport-Stage-professionnel-BENDAOU-Mourad_revise
Rapport-Stage-professionnel-BENDAOU-Mourad_reviseMourad Bendaou
 

Similar a Les essais geotechniques en laboratoire et in situ (18)

Rapport PFE Génie Electrique (2016)
Rapport PFE Génie Electrique (2016)Rapport PFE Génie Electrique (2016)
Rapport PFE Génie Electrique (2016)
 
EPFL_TH4697.pdf
EPFL_TH4697.pdfEPFL_TH4697.pdf
EPFL_TH4697.pdf
 
Enjeux et Défis de la surveillance des barrages au Cameroun
Enjeux et Défis de la surveillance des barrages au CamerounEnjeux et Défis de la surveillance des barrages au Cameroun
Enjeux et Défis de la surveillance des barrages au Cameroun
 
50376 1991-318
50376 1991-31850376 1991-318
50376 1991-318
 
Mémoire charafa olahanmi Licence Professionnelle en Hydraulique
Mémoire charafa olahanmi Licence Professionnelle en HydrauliqueMémoire charafa olahanmi Licence Professionnelle en Hydraulique
Mémoire charafa olahanmi Licence Professionnelle en Hydraulique
 
Mon mémoire de fin d'étude(2012-2013)
Mon mémoire de fin d'étude(2012-2013)Mon mémoire de fin d'étude(2012-2013)
Mon mémoire de fin d'étude(2012-2013)
 
Traitement de l'air-intérieur - performance et innocuite systemes et matériau...
Traitement de l'air-intérieur - performance et innocuite systemes et matériau...Traitement de l'air-intérieur - performance et innocuite systemes et matériau...
Traitement de l'air-intérieur - performance et innocuite systemes et matériau...
 
BMNW Rapport de stage 2015
BMNW Rapport de stage 2015BMNW Rapport de stage 2015
BMNW Rapport de stage 2015
 
400287113-rapport-pfe-fst-version3-1-docx.docx
400287113-rapport-pfe-fst-version3-1-docx.docx400287113-rapport-pfe-fst-version3-1-docx.docx
400287113-rapport-pfe-fst-version3-1-docx.docx
 
dspp 300dpi
dspp 300dpidspp 300dpi
dspp 300dpi
 
Etude De La Formation De Polluants Lors De La Combustion De Carburants Oxygen...
Etude De La Formation De Polluants Lors De La Combustion De Carburants Oxygen...Etude De La Formation De Polluants Lors De La Combustion De Carburants Oxygen...
Etude De La Formation De Polluants Lors De La Combustion De Carburants Oxygen...
 
Rapport
RapportRapport
Rapport
 
GCI-I5 (MENG Try)
GCI-I5 (MENG Try)GCI-I5 (MENG Try)
GCI-I5 (MENG Try)
 
mon mémoire_finale_samedi_matin_article(2).p df-1
mon mémoire_finale_samedi_matin_article(2).p df-1mon mémoire_finale_samedi_matin_article(2).p df-1
mon mémoire_finale_samedi_matin_article(2).p df-1
 
Th2630
Th2630Th2630
Th2630
 
Rapport geotechnique apd
Rapport geotechnique apdRapport geotechnique apd
Rapport geotechnique apd
 
1995 th hu_c_ns18476
1995 th hu_c_ns184761995 th hu_c_ns18476
1995 th hu_c_ns18476
 
Rapport-Stage-professionnel-BENDAOU-Mourad_revise
Rapport-Stage-professionnel-BENDAOU-Mourad_reviseRapport-Stage-professionnel-BENDAOU-Mourad_revise
Rapport-Stage-professionnel-BENDAOU-Mourad_revise
 

Último

SciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdfSciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdfSKennel
 
Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...
Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...
Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...maach1
 
présentation sur la logistique (4).
présentation     sur la  logistique (4).présentation     sur la  logistique (4).
présentation sur la logistique (4).FatimaEzzahra753100
 
CHAPITRE 2 VARIABLE ALEATOIRE probabilité.ppt
CHAPITRE 2 VARIABLE ALEATOIRE probabilité.pptCHAPITRE 2 VARIABLE ALEATOIRE probabilité.ppt
CHAPITRE 2 VARIABLE ALEATOIRE probabilité.pptbentaha1011
 
Actions du vent sur les bâtiments selon lEurocode 1 – Partie 1-4.pdf
Actions du vent sur les bâtiments selon lEurocode 1 – Partie 1-4.pdfActions du vent sur les bâtiments selon lEurocode 1 – Partie 1-4.pdf
Actions du vent sur les bâtiments selon lEurocode 1 – Partie 1-4.pdfalainfahed961
 
Câblage, installation et paramétrage d’un réseau informatique.pdf
Câblage, installation et paramétrage d’un réseau informatique.pdfCâblage, installation et paramétrage d’un réseau informatique.pdf
Câblage, installation et paramétrage d’un réseau informatique.pdfmia884611
 

Último (8)

SciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdfSciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdf
 
CAP2ER_GC_Presentation_Outil_20240422.pptx
CAP2ER_GC_Presentation_Outil_20240422.pptxCAP2ER_GC_Presentation_Outil_20240422.pptx
CAP2ER_GC_Presentation_Outil_20240422.pptx
 
Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...
Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...
Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...
 
Note agro-climatique n°2 - 17 Avril 2024
Note agro-climatique n°2 - 17 Avril 2024Note agro-climatique n°2 - 17 Avril 2024
Note agro-climatique n°2 - 17 Avril 2024
 
présentation sur la logistique (4).
présentation     sur la  logistique (4).présentation     sur la  logistique (4).
présentation sur la logistique (4).
 
CHAPITRE 2 VARIABLE ALEATOIRE probabilité.ppt
CHAPITRE 2 VARIABLE ALEATOIRE probabilité.pptCHAPITRE 2 VARIABLE ALEATOIRE probabilité.ppt
CHAPITRE 2 VARIABLE ALEATOIRE probabilité.ppt
 
Actions du vent sur les bâtiments selon lEurocode 1 – Partie 1-4.pdf
Actions du vent sur les bâtiments selon lEurocode 1 – Partie 1-4.pdfActions du vent sur les bâtiments selon lEurocode 1 – Partie 1-4.pdf
Actions du vent sur les bâtiments selon lEurocode 1 – Partie 1-4.pdf
 
Câblage, installation et paramétrage d’un réseau informatique.pdf
Câblage, installation et paramétrage d’un réseau informatique.pdfCâblage, installation et paramétrage d’un réseau informatique.pdf
Câblage, installation et paramétrage d’un réseau informatique.pdf
 

Les essais geotechniques en laboratoire et in situ

  • 1. BURKINA FASO Unité-Progrès-Justice Ministère des Enseignements Ministère des Infrastructures Secondaire et Supérieur du Désenclavement et des Transports (MESS) -------------- ----------------------- UNIVERSITE DE OUAGADOUGOU Laboratoire National du Bâtiment et des Travaux Publics ------------- (LNBTP) Ecole Nationale Supérieure d’Ingénieurs de Fada Filière: Génie-civil (ENSIF) Rapport de stage pour l’obtention du Diplôme d’Ingénieur des Travaux Première promotion Mai 2014 Auteur : Wendyam Arsène Flavien DAMIBA Maître de stage : M. Ali SANA Chef du Département Géotechnique Routière
  • 2. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF i Dédicaces  À mes parents Edouard. D. DAMIBA et Scholastique TAPSOBA, j’y suis arrivée grâce à vous.  À ma sœur Baowendsom Sylvie Laure DAMIBA, courage ! Plus qu’un pas.  A toute ma famille, noyau vital de ma réussite à l’école et dans la société ;  A tous mes amis qui m’ont soutenu dans cette quête de la connaissance et dans cet apprentissage dans la vie sociale;  A mon ami Arzouma Modeste KYELEM;  A tous les promotionnaires avec qui j’ai partagé les joies et les inquiétudes de l’année ;  Aux nobles enseignants rencontrés tout au long de ma scolarité ! Qu’ils trouvent dans ce travail l’effort que chacun a consenti !
  • 3. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF ii Remerciements Le plaisir que j’ai eu à effectuer cette étude provient en grande partie de toutes les personnes qui m’ont encadré et permis d’avancer pendant ce stage. Je tiens à les remercier mes sincères remerciements :  Au Directeur Général du Laboratoire National du Bâtiment et des Travaux Publics (L.N.B.T.P) pour m’avoir accepter comme stagiaire ;  A mon maître de stage Mr Ali SANA chef du Département Géotechnique Routière (D.G.R) pour l’attention portée à ma personne ;  A tout le personnel du L .N.B.T.P que j’ai pu côtoyer merci à chacun d’entre vous pour votre aide et votre bonne humeur ;  A l’administration et au corps professoral de l’ENSI-F pour les connaissances acquises ; À tous ceux qui m’ont toujours apporté leur soutien et qui d’une manière ou d’une manière ou une autre, ont contribué à la réalisation de ce stage puissiez vous trouvez ici l’expression de ma profonde gratitude.
  • 4. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF iii Résumé Le but de ce travail est de présenter dans un premier temps, les différents essais géotechniques tout en soulignant les réalités pratiques de réalisation de ces essais en laboratoire et in situ ; et dans un second temps, analyser et interpréter les résultats de ses essais qui seront confrontés aux prescriptions Cahier des Clauses Techniques Particulières d’un projet de génie civil. Mais il sera avant tout question d’une présentation générale de la structure d’accueil . Il ressortira à la fin de cette analyse comparative, la décision de procéder ou non à la réception de l’ouvrage pour la suite de la réalisation. Ce travail se révèle principalement être une étude de réalisation des différents essais géotechniques afin de déterminer leurs propriétés ; et le contrôle de qualité en laboratoire et in situ ; qualité non seulement des matériaux utilisés, mais aussi de l’emploie de ces matériaux pour les travaux de réalisation des ouvrages en général. Abstract The aim of this work is to present initially, the various geotechnical essays while underlining realities practice realization of these essays laboratory and in situ; and in the second time, to analyze and interpret the results of its essays which confronting with the regulations Book of the Particular Technical specifications of a project of civil engineering. But it will be before any question of a general presentation of the reception facilities. It will arise at the end of this comparative analysis, the decision to proceed or not to the reception of the work for the continuation of the realization. This work mainly proves to be a study of realization of the various geotechnical essays in order to determine their properties, and it quality control in laboratory and in situ; quality not only of materials used, but also of in general employs these materials for the initial work of the works.
  • 5. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF iv Liste des sigles et abréviations: A: Coefficient d’aplatissement ou Affaissement AASHTO : American Association of State Highway and Transportation Official AG : Analyse granulométrique AFNOR : Association Française de Normalisation ASTM : American Society for Testing and Material CBR : California Bearing Ratio test (essai californien de portance) Cc : Coefficient de courbure CCTP : Cahier des Clauses Techniques Particulières Cu : Coefficient d’uniformité D : densité DGR : Département Géotechnique Routière DSF : Département Sol et Fondation DS : Département Structure ENSIF : Ecole Nationale Supérieure d’Ingénieurs de FADA N’Gourma ES Equivalent de sable GAL : Grave Argileuse Latéritique Ic : Indice de compacité ICBR : indice CBR IP Indice de plasticité IPI : Indice Portant immédiat PS : Poids spécifique P : Propreté superficielle OPM : Optimum Proctor Modifié LNBTP : Laboratoire National du Bâtiment et des Travaux Publics ; LA : Los Angeles MDE: Micro Deval à eau UU : Cisaillement direct Undrained Unconsolided (non drainé non consolidé) Wl Limite de liquidité Wp Limite de plasticité W Teneur en eau
  • 6. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF v Table des matières Dédicaces ....................................................................................................................................i Remerciements...........................................................................................................................ii Résumé......................................................................................................................................iii Abstract .....................................................................................................................................iii Liste des sigles et abréviations:.................................................................................................iv Introduction ................................................................................................................................ 1 Chapitre I : Présentation du L.N.B.T.P ...................................................................................... 2 I.1 Domaines d’intervention du L.N.B.T.P..................................................... 2 I.2 Organigramme du L.N.B.T.P............................................................... 2 Chapitre II : Essais géotechniques sur les matériaux................................................................. 4 II.A Département géotechnique routière ..................................................... 4 II.A.1 Section échantillonnage................................................................. 4 II.A.1.1 Echantillonnage ........................................................................ 4 II.A.2 Section granulométrie ................................................................... 5 II.A.2.1 Analyse granulométrique par tamisage............................................. 5 II.A.2.2 Essai de détermination du coefficient d'aplatissement............................ 7 II.A.2. 3 Détermination de la propreté superficielle ...................................... 8 II.A.2.4 Essai de détermination du poids spécifique ou masse volumique réelle des granulats................................................................................................ 9 II.A.3 Section Limites d’Atterberg et Equivalent de Sable ............................... 10 II.A.3.1 Limites d’Atterberg................................................................ 10 II.A.3.1.3 Essai d’équivalent de sable..................................................... 12 II.A.4 Section Proctor-CBR ................................................................ 14 II.A.4.1 Essai Proctor modifié............................................................. 14 II.A.4.2 Essai CBR.......................................................................... 15 II.A.5 Section Produits hydrocarbonés .................................................... 18 II.A.5.1 Essais d’identification de bitume ................................................ 18 II.A.5.2 Essai Kumagawa ................................................................. 19 II.A.5.3 Essai Marshall.................................................................... 20 II.A.5.4 Essai Duriez........................................................................ 22 II.B Chantier : Travaux de construction et de bitumage de la route RD 152 OUAGADOUGOU- NIOKO- SAABA y compris les bretelles d’accès au CSPS et à l’université SAINT THOMAS D'AQUIN....................................................................... 24
  • 7. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF vi II.B.1 Revêtement ......................................................................... 24 II.B.2 Les contrôles préalables ............................................................ 25 II.C Département sol et fondation ............................................................ 29 II.C.1 Essai de cisaillent direct non drainé non consolidé sur sol argileux................. 29 II.C.3 Essai pénétrométrique (NF P 94-115).............................................. 32 II.D Département structure ................................................................... 33 II.D.1 Etude et fabrication du béton au labo ou in situ ................................... 33 II.D.2 Essai d’affaissement au cône d’Abrams ........................................... 33 II.C.3 Essai de compression ............................................................... 34 II.C.4 Essai de densité apparente des gravillons et sables .............................. 35 II.C.5 Essai Micro-Deval à eau............................................................ 36 II.C.6 Essai Los Angeles ................................................................. 37 II.C.7 Essai de traction de l’acier.......................................................... 39 Chapitre III : Analyse et interprétation des résultats obtenus .................................................. 40 III.1 Paramètres similaires.................................................................... 40 III.2 Analyse granulométrique (essai d’identification)................................... 40 III.3 Equivalent de sable, essai de propreté du gravier, coefficient d’aplatissement et pois spécifique............................................................................................. 41 III.4 Les limites d’Atterberg (essai d’identification) ..................................... 41 III.5 Essai Proctor Modifié ................................................................ 41 III.6 Essai CBR............................................................................. 41 III.7 Essais sur le bitume et l’enrobé ...................................................... 42 III.8 Densité apparente des matériaux, Los Angeles et Micro-Deval.................... 42 III.9 Formulation du béton simplifié et essai de traction de l’acier...................... 42 III.10 Densitomètre à membrane, plaque et boîte doseuses.............................. 42 III.11 Essai de cisaillement ................................................................ 43 III.13 Pénétromètre dynamique........................................................... 43 Chapitre IV : Remarques et suggestions .................................................................................. 44 Conclusion................................................................................................................................ 45 Références bibliographiques .................................................................. 46 Sources des fichiers intégrés .................................................................. 46 ANNEXES ............................................................................................................................... 47 ANNEXE I : FICHES TECHNIQUES RECAPITULATIVES ............................. 47 ANNEXE II : MATERIELS ET ACCESSOIRES NECESSAIRES........................ 67
  • 8. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 1 Introduction L’Ecole Nationale Supérieure d’Ingénieurs de Fada N’Gourma (ENSI-F) est un institut universitaire qui forme des étudiants aux métiers du Génie (civil, minier,…).Consciente qu’une formation théorique sans expérience pratique est incomplète voire vaine, un stage obligatoire de fin de cycle est demandé à tout élève ingénieur pour l’obtention du diplôme d’ingénieur des travaux. Aussi la géotechnique étant le domaine d’étude des propretés physiques, mécaniques, hydrauliques des sols et de leur application en génie civil, elle est indispensable pour les élèves et étudiants en formation de génie civil. Ainsi, nous avons choisi le Laboratoire National Burkinabé de Travaux Publiques (L.N.B.T.P) comme lieu de stage, qui d’ailleurs a bien voulu nous accueillir et nous a donné comme thème : ‹‹Les essais géotechniques en laboratoire et in situ››. Les essais et le contrôle géotechniques se placent au cœur même de l’exécution de tout chantier et ils constitueront l’objet de notre présent travail. Notre travail s’articulera autour trois (03) principaux axes : Nous présenterons tout d’abord d’une façon générale le L.N.B.T.P, puis nous présenterons quelques essais géotechniques et leurs réalités pratiques de réalisation ; et nous terminerons par une exploitation des résultats obtenus lors de ces essais.
  • 9. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 2 Chapitre I : Présentation du L.N.B.T.P Le Laboratoire National du Bâtiment et des Travaux Publics (L.N.B.T.P/Burkina), est un établissement public à caractère industriel et commercial. Il a été créé en 1968 par décret n°68- 223/PL/TP. Structure bien organisée, il intervient dans plusieurs domaines du génie civil. Le L .N.B.T.P siège à Ouagadougou (Burkina Faso) et plus précisément dans le quartier Gounghin sur le boulevard Naaba ZOMBRE. Il a une représentation appelée Délégation Régionale à Bobo Dioulasso. I.1 Domaines d’intervention du L.N.B.T.P De nombreux services sont rendus par la dite société à plusieurs niveaux. Elle intervient en effet dans :  les missions d’études et d’expertises  les missions de recherche appliquée et fondamentale  le domaine d’infrastructures et de transport  le domaine de construction des matériaux  le domaine de la mécanique des sols et fondations  le domaine de la recherche  le domaine du contrôle technique I.2 Organigramme du L.N.B.T.P Son personnel est constitué de 277 personnes dont 147 permanents parmi lesquels on dénombre environ une trentaine de cadres (ingénieurs, techniciens, agents techniques), et 130 temporaires. Pour réussir la mission qu’il s’est assigné, le L.N.B.T.P s’est tracé une ligne de conduite qui l’a amené à l’organisation suivante :
  • 10. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 3
  • 11. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 4 Chapitre II : Essais géotechniques sur les matériaux Pour la suite il sera question de procéder par essai dans les différentes sections de chaque département et pour chacun des essais précédemment cités, de le définir, et de donner son but, son principe ainsi que le matériel effectivement utilisé pour l’exécution de l’essai et pour finir, son mode opératoire avec à l’appui des illustrations sous la base qu’un schéma vaut 1000 mots. Les feuilles de calcul (et/ou l’expression des résultats) ainsi que les formules seront en annexe I et annexe II : photos matériels. Le nom d’une section fait référence aux essais qui y sont réalisés. II.A Département géotechnique routière II.A.1 Section échantillonnage II.A.1.1 Echantillonnage a) Le prélèvement Les matériaux déposés sur le chantier peuvent ne pas provenir du même emprunt. Par soucis de ne pas faire l’étude sur le même échantillon au risque d’avoir des résultats erronés, le prélèvement s’effectue sur toute une planche de longueur d’environ une centaine de mètre. Quant à la quantité du matériau prélevé, elle est d’environ une soixantaine de kilogramme car le même matériau devait non seulement subir tous les essais nécessaires, mais aussi servir de réserve pour une éventuelle reprise pour confirmer des résultats contradictoires, divergents avec ceux obtenus par le laboratoire de l’entrepreneur. De retour au laboratoire, le matériau prélevé de quantité Q est étalé puis séché à l’air libre pendant environ quatre (04) heures de temps, dans le but de diminuer la teneur en eau du matériau avant l’essai car une importante teneur en eau pourrait nuire à la bonne qualité des résultats. b) Exécution de l’essai Au laboratoire, l’essai doit être fait sur une quantité plus faible q. Comment séparer cette quantité q représentative de Q ? Deux procédés de base assez satisfaisante sont utilisés : par quartage et à l’aide d’échantillonneur. NOTA : Une fois le matériau provenant du chantier jugé sec, on procède au tamisage. En effet le matériau est passé au tamis de 20mm afin d’éliminer les graviers grossiers. Puis seuls les passants sont retenus pour l’échantillonnage.  Le quartage Comme le nom l’indique, on divise l’échantillon en quarts. Placer l’échantillon bien homogénéisé dans un bac métallique à bords peu élevés (de préférence), et l’étaler. A l’aide d’une truelle, partager d’abord eu deux moitiés (1), puis en quatre quarts (2), sensiblement égaux. Eliminer les fractions A et D, et réunir les fractions opposées B et C: on a ainsi la moitié de l’échantillon primitif.
  • 12. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 5  Emploi d’échantillonneur Cet appareil de laboratoire permet de diviser facilement en deux parties représentatives la totalité d’un échantillon initial. Des cloisons transversales constituent une succession d’entonnoirs dont les ouvertures sont dirigées d’un côté et de l’autre. Le matériau à étudier, versé dans l’échantillonneur à l’aide d’une pelle spéciale est recueilli dans 2 petits bacs. Chaque moitié, représentative de l’ensemble peut être encore partagée en 2, puis encore en 2 etc.…. A la fin, l’échantillon est reparti dans des plats ‘points', pesés, étiquetés. L’essai Proctor nécessite 5 points (6 kg d’environ), l’essai CBR nécessite 3 points. NOTA : Ces deux procédés peuvent être utilisés séparément ou conjointement, en fonction des quantités à séparer et de la grosseur maximale des grains. II.A.2 Section granulométrie II.A.2.1 Analyse granulométrique par tamisage a) Définition et but de l’essai L’analyse granulométrique est un essai qui consiste à étudier la granulométrie du granulat, c’est –à- dire la distribution des grains suivant leur dimension en déterminant par pesée l’importance relative des classes de grains de dimension bien définies par pourcentages. Elle se fait par tamisage pour la fraction de granulat dont le diamètre des grains est supérieur à 0.080 mm et par sédimentométrie pour la fraction des sols dont le diamètre des grains est inférieur à 0.08 mm. Pour ce travail l’analyse granulométrique s’est limitée au tamisage. b) Principe de la méthode L’opération consiste à éliminer par lavage à l’eau des fillers puis à procéder un tamisage après séchage à l’étuve. À partir de la masse on détermine les différents pourcentages des refus. Les résultats sont exprimés sous forme d’un graphique semi-logarithmique appelé courbe granulométrique. Cette courbe est l’un des indicateurs permettant de caractériser la distribution granulométrique du matériau. c) Matériel nécessaire une série de tamis (fils métalliques à mailles carrées), un tamis de 80 µm pour le lavage, une étuve pour le séchage, un fond de cuve et couvercle, une brosse métallique, une balance de précision.
  • 13. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 6 d) Mode opératoire d.1) Les préparations avant l’essai  Préparations avant l’essai d’analyse granulométrique par tamisage Après l’échantillonnage, le tas réservé pour l’essai granulométrique par tamisage est recueilli dans un plat, pesé puis lavé à grande eau sur le tamis de 80µm pour éliminer les fillers. Le lavage est terminé si l’eau qui s’écoule du tamis prend l’aspect clair. Après lavage, les refus son mis à l’étuve à 105°C pendant 24H. À sa sortie de l’étuve, on pèse le matériau pour déterminer sa masse sèche et on commence le tamisage.  Préparations avant l’essai d’analyse granulométrique par tamisage à sec après lavage 1 M1h Etuvage Pesée M1s 2 M Mh Lavage au tamis 80µm Etuvage Pesée Ms A partir de l'échantillon M, on divise le matériau en deux échantillons. 1. Le premier échantillon sert exclusivement à établir une règle de proportionnalité sur la teneur en eau considérée uniforme du granulat. Pour cela il est prélevé et pesé humide, M1h puis séché et pesé sec M1s. 2. Le second est prélevé et pesé humide, Mh puis tamisé par lavage (sur le tamis de 80µm) séché et pesé sec Ms. Le raisonnement permettant de déterminer (par calcul) la masse sèche totale de l’échantillon à laver sans le sécher est le suivant. Si la masse humide d’un échantillon de granulat, M1h, donne une masse sèche M1s alors la masse de n’importe qu’elle autre échantillon du même granulat Mh donnera la masse totale sèche Ms correspondante par proportionnalité (règle de trois), soit: Ms =Mh (M1s/M1h). La masse sèche Ms1 prélevée sur Ms sera utilisée pour l’essai.
  • 14. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 7 d.2) L’exécution de l’essai Après observation du granulat, faire choix du tamis le plus fin et du tamis le plus gros. On s’arrange en général pour que le granulat passe entièrement au travers du tamis le plus gros. Empiler les tamis dans l’ordre croissant (bas vers le haut), agiter horizontalement le tout manuellement jusqu’à ce qu’il ne passe pratiquement plus de matière susceptible d’influencer les résultats de façon significative. Puis agiter individuellement chaque tamis, supérieur jusqu’au dernier (c’est le tamisage). Peser les refus en cumulé. C’est à dire, peser le contenu du premier tamis puis y ajouter le contenu du tamis immédiatement inférieur pour avoir le refus cumulé, et ainsi de suite. Porter les résultats des refus cumulés en g dans un tableau. Calculer les refus cumulés en % Calculer les tamisât en % Tracer la courbe. Les feuilles d’essais et les courbes en annexe1, l’analyse et l’interprétation des résultats au chapitre III. II.A.2.2 Essai de détermination du coefficient d'aplatissement a)Définition et but Le coefficient d’aplatissement d’une classe correspond au passant en % du tamisage sur la grille à fentes correspondante. La détermination du coefficient d'aplatissement est l'un des tests permettant de caractériser la forme plus ou moins massive des granulats. b) Principe Séchée et pesée, la prise d’essai est d’abord divisée en classes granulaires d/D selon leur grosseur par tamisage sur tamis à mailles carrées. Chacune de ces classes est à son tour passée sur une grille à fente parallèles d’écartement G/ E> 1,58. La forme d’un élément est définie par trois dimensions principales à savoir la longueur (L), l’épaisseur (E) et la grosseur (G). Le coefficient d’aplatissement A d’un lot de granulat soumise à l’essai est par définition le pourcentage des éléments tels que : G/E>1,58 c) Matériel nécessaire une balance une étuve une série Tamis de 80 µm à 80 mm une série Grille à fente de 2.5 mm à 20 mm
  • 15. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 8 d) Mode opératoire (NF P 18-561) Granulat de masse M0 déversé sur tamis à maille d2 Passant Mg à travers le tamis d1 et refusé sur d2 Déversé sur grille à fentes d’écartement d2/1,58 Matériau refusé = bonne forme Tamis d2 immédiatement inférieur à d1 1 2 Matériau passant Me =mauvaise forme 1. L’échantillon (point) provenant de l’échantillonnage est d’abord écrêté (lavage) au tamis de 4mm et le refus séché de masse M0 est utilisé pour le double tamisage. Pour chaque tamis, peser le refus élémentaire de masse Mg, 2. Passer ensuite le refus élémentaire à la grille, recueillir le passant et le peser Me, Le coefficient d’aplatissement de cette classe granulaire est 100x (Me/Mg). Procéder de même pour les autres tamis. Le coefficient d’aplatissement global A est donné par: A=100x (∑Me/∑Mg). La feuille d’essai en annexe2, l’analyse et l’interprétation des résultats au chapitre III. II.A.2. 3 Détermination de la propreté superficielle a) Définition et but La propreté superficielle est définie comme étant le pourcentage pondéral de particules de dimensions inférieures à 0,5mm adhérentes à la surface ou mélangées à un granulat de dimension supérieure à 2mm. L'essai de propreté d'un gravier met en évidence la présence d'éléments fins dans le gravier et permet de les quantifier. Le but de l'essai est donc de déterminer la propreté d'un granulat au regard de son utilisation possible. b) Principe de la méthode Les éléments fins contenus dans le granulat à tester sont séparés par lavage sur un tamis d'ouverture 0.5mm. Leur pourcentage est déterminé par pesée après séchage du refus. c) Matériel nécessaire un ami de 0,5 mm une balance de precision1g  une étuve
  • 16. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 9 3 d) Mode opératoire (NF P 18-591 sept. 90) Il s’agit de séparer par lavage sur tamis de 0.5 mm les particules inferieures à cette dimension. Pour l’expression des résultats, on calcule d’abord la masse sèche de l’échantillon soumis à l’essai Ms à partir de la formule suivante : Ms (g) = Mh x (M1s/M1h). M1h : le premier échantillon préparé; Mh : le deuxième échantillon préparé ; M1s : la masse sèche du premier échantillon séché à l’étuve. Ensuite, on calcul la masse sèche m des éléments inferieurs à 0.5 mm par la formule : m(g) = Ms – m’ La feuille d’essai en annexe3, l’analyse et l’interprétation des résultats au chapitre III. II.A.2.4 Essai de détermination du poids spécifique ou masse volumique réelle des granulats Par définition, c’est la masse du granulat sec sans les vides (pores) occupant l’unité de volume V mesuré avec le pycnomètre. Le matériau est d’abord lavé au tamis de 4mm et séché puis on prend une masse de prise d’essai selon la taille du ballon. Plaque de verre eau P1 P2 P3 P4 Ballon vide Les pesées Matériau  Peser le ballon (propre, sec) vide et sa plaque de verre soit le poids P1,  Le remplir intégralement d’eau en le couvrant de sa plaque de verre afin d’éliminer si nécessaire les bulles d’air emprisonnées soit le poids P2,  Vider le ballon, y verser une certaine quantité de matériau sec soit le poids P3,  Une fois le matériau versé, remplir nouveau celui-ci d’eau (laisser reposer minimum 15mn), et faire le vide au moyen de la cloche à vide (2h) afin d’éliminer les pores, et peser soit le poids P4.
  • 17. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 10 Renouveler l’opération pour faire la moyenne. NOTA : La méthode est dite celle du pycnomètre mais dans ce cas, un ballon a été utilisé. La feuille d’essai en annexe4, l’analyse et l’interprétation des résultats au chapitre III. II.A.3 Section Limites d’Atterberg et Equivalent de Sable II.A.3.1 Limites d’Atterberg a) Définition La limite d’Atterberg informe sur l’étendue de la plage de teneur en eau à l’intérieur de laquelle le sol remanié a un comportement plastique, c’est-à-dire « pâteux ». C’est l’un des essais de laboratoire les plus complexe car elle demande la présence effective, l’attention ainsi que le bon sens de l’opérateur. L’essai s’effectue sur les fines et deux des cinq (05) limites d’Atterberg étaient déterminés au laboratoire. Il s’agit de la limite de liquidité et celle de plasticité. II.A.3.1.1 Limite de liquidité a) But et principe de la méthode Le but de cet essai est de déterminer la teneur en eau d’un échantillon à son passage de l’état liquide à l’état plastique. L’essai consiste à déterminer le nombre de coup à la coupelle de Casagrande permettant de refermer d’environ1.mm les deux (02) lèvres de la rainure et de déterminer la teneur en eau correspondant au nombre de coups. On répète cinq fois l’opération et on trace la droite de la limite de liquidité appelée courbe d’écoulement, représentant la teneur en eau en fonction du nombre de coups. La limite de liquidité est ainsi obtenue à partir de cette droite et correspond à la teneur en eau obtenu avec 25 coups à la coupelle de Casagrande. b) Matériel nécessaire un plat pouvant contenir tout le matériau après lavage, un tamis de 0.4mm pour le lavage, une pipette d’eau, appareil de Casagrande et accessoires, une plaque en acier pour le malaxage, une balance, une étuve pour la détermination de la teneur en eau.
  • 18. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 11 c) Mode opératoire (NFP 94-051)  Préparation avant l’essai Après échantillonnage, l’échantillon réservé aux limites est lavé à l’eau sur le tamis de 0.4 mm soit de module AFNOR n° 27. Seules les particules fines passant à ce tamis recueillies dans un plat seront retenues pour l’essai. Le plat contenant l’eau trouble est ensuite déposé plusieurs heures à l’ombre pour permettre aux fines de décanter. L’eau claire surnageant la pâte est perpétuellement chiffonnée pour accélérer le processus de décantation.  L’exécution de l’essai La pâte est renversée sur la plaque métallique, et on commence le malaxage qui dure quelques minutes. Le but est d’homogénéiser la pâte et on la considèrera homogène lorsque qu’elle est exempte de morte. Une fois homogène et après avoir bien nettoyé la coupelle de Casagrande, la pâte est délicatement remplie sur le plateau de la coupelle et on racle soigneusement la moitié que l’on remet sur la plaque. Le but du raclage est de respecter la prescription de la norme selon laquelle l’épaisseur au centre doit être de 15 à 20 mm. Aussi, la pression exercée sur la pâte permet pour ainsi de rendre le remplissage parfait. À l’aide l’outil à rainurer, on crée d’un seul mouvement une rainure séparant complètement la pâte en deux. À l’aide de la manivelle de la coupelle, effectuer une série de choc régulier d’environ 02 coups/s. Pendant ce temps l’attention de l’operateur doit être fixée sur les deux lèvres de la rainure car il doit arrêter les coups dès lors qu’elle se touche d’environ 15 mm. L’essai n’est acceptable que si l’on obtient au premier essai un nombre de coups supérieur à quinze (15). Noter alors le nombre de coups et prélever des tares pour déterminer de la teneur en eau après avoir pesé la masse humide et répéter ainsi l’opération pour les trois autres points de la droite. La feuille d’essai en annexe5, l’analyse et l’interprétation des résultats au chapitre III. II.A.3.1.2 Limite de plasticité a) But et principe de la méthode Cet essai relativement plus simple que le précèdent a pour but de déterminer la teneur en eau d’un échantillon de sol de son passage de l’état liquide à l’état solide. Appareil de Casagrande ²
  • 19. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 12 Le principe de l’essai consiste à rouler à la main et contre une plaque un échantillon de sol jusqu’à observer l’apparition des fissures et procéder à la détermination de la teneur en eau dès l’apparition de ces fissures. b) Matériel nécessaire L’essai est généralement effectué après la limite de liquidité. Ainsi, une partie du précédant matériel est reconduit : le tamis de 0.4 mm, la plaque métallique, la pipette, l’étuve. c) Mode opératoire (NFP 94-051) L’exécution de l’essai consiste à confectionner un cylindre de terre en rouler à la main et contre une plaque un échantillon jusqu’à ce qu’il présente les dimensions suivantes : Diamètre 3 mm, Longueur 10-15 cm. On s’arrête dès l’apparition de fissure sur le cylindre. Découper ensuite ce cylindre en trois ou quatre parties que l’on partage dans deux tares. Répéter l’opération cinq ou six fois et peser les cylindres dans des tares pour déterminer la masse humide. Des tares sont ensuite mises à l’étuve pour la détermination de la teneur en eau. La feuille d’essai en annexe5, l’analyse et l’interprétation des résultats au chapitre III. II.A.3.1.3 Essai d’équivalent de sable a) Définition et but de l'essai L'équivalent de sable (ES) est le rapport multiplié par 100 de la hauteur de la partie sableuse sédimentée à la hauteur totale du floculat par rapport au fond de l’éprouvette. L'essai d'équivalent de sable permet de mesurer la propreté d'un sable. Il rend compte globalement de la quantité des éléments fins contenus dans ce sable : fines de nature siliceuse, calcaire et argileuse y compris celles enveloppant les granulats de dimension supérieure à 80µm et qui n’apparaissent pas dans l’analyse granulométrique par voie sèche.
  • 20. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 13 b) Principe de la méthode L'essai consiste à faire floculer les éléments fins d'un sable mis en suspension dans une solution lavante puis, après un temps de mise au repos donné, à mesurer la hauteur des éléments sédimentés. Il est effectué sur la fraction du sable passant au tamis à mailles carrées de 5mm. c) Mode opératoire  Préparation de l’échantillon L’essai est réalisé sur les granulats 0/2mm à une teneur en humidité inférieure à 2% à la température ambiante (25C0 ).Ainsi dans certains cas il est nécessaire de réduire (en étalant à l’air car étant trop humide) ou d’augmenter (trop secs) la teneur en humidité naturelle afin d’obtenir une prise d’essai dont l’humidité est comprise entre 0 et 2%. Après avoir tamisé l’échantillon humide au tamis de 2mm le passant est prélevé dans une tare et mis à l’étuve à 105C0 pendant au moins 4h afin de déterminer la teneur en eau initiale W%. Prélever pour chaque prise une quantité (Mh) de matériau humide correspondant à 120 g ± 1 g de matériau sec, c'est à dire : Ms=120(1+W/100) en g et on commence l’essai proprement dit.  Exécution de l’essai Remplir les 2 éprouvettes de solution lavante jusqu'au repère n°1(100ml), puis verser les prises de matériau. Eliminer les bulles d'air en frappant à plusieurs reprises la base de l’éprouvette sur la paume de la main pour déloger les bulles d’air et favoriser le mouillage de l’échantillon puis laisser reposer 10 mn. Boucher les 2 éprouvettes et les placer sur l’agitateur mécanique. Laver les parois intérieures des éprouvettes à l'aide du tube laveur et remplir jusqu'au trait repère n°2
  • 21. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 14 Laisser reposer 20 mn ± 10 s Déterminer ESv et ES H1, H'2, H2 sont arrondis au mm près (piston taré de 1Kg). La feuille d’essai en annexe6, l’analyse et l’interprétation des résultats au chapitre III. II.A.4 Section Proctor-CBR II.A.4.1 Essai Proctor modifié a) Définition et but de l’essai Au fur et à mesure que la teneur en eau augmente, l’eau agit comme un lubrifiant, elle réduit les frottements et facilite les glissements (ce qui amène le sol à se ramollir et à devenir plus facile à travailler). Les grains peuvent alors, sous l’effet du compactage, se serrer en ne laissant subsister entre eux qu’un minimum de vides résiduels. Il en résulte des densités plus élevées et des teneurs en air plus faibles. L'essai Proctor tient son nom de l'ingénieur Ralph R. Proctor, il reproduit le même phénomène au laboratoire afin de déterminer la densité maximale du sol et des granulats analysés, en d’autres termes savoir comment manier un sol ou des granulats de sorte qu’avec un volume de vide restreint on ait un maximum de concentration en matériau élevée. L’essai Proctor a pour but de déterminer la teneur en eau optimale pour un sol de remblai donné et des conditions de compactage fixées qui conduit au meilleur compactage possible. Autrement dit, l’essai a pour objectif de déterminer la teneur en eau correspondant à une capacité portante maximale. b) Principe de la méthode L'essai consiste à tester la compacité du sol porté à différentes teneur en eau variable et croissante d’amplitude 2, et à mesurer la teneur en eau et son poids spécifique après compactage. L’opération est répétée cinq (05) fois de suite jusqu’à la chute du poids spécifique. Cinq (05) points de la courbe densité sèche en fonction de la teneur en eau sont alors déterminés. Les coordonnées ( , ) correspondants à l’Optimum Proctor Modifié (OPM) sont représentés par le point maximal de la courbe qui donne en abscisse la teneur en eau optimale pour une compacité maximum en ordonnée.
  • 22. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 15 c) Matériel nécessaire à l’essai un moule CBR + embase, une dame Proctor modifiée, une règle à araser métallique, un disque d’espacement, une bâche à homogénéisation, une éprouvette graduée (1000 ml :10 ±5 ; 20°C), des tares au nombre de 10, une clé mécanique, une étuve de 300°C max, une balance (kern max 16100g d=0,1g). d) Mode opératoire (NFP 94-093) Un des cinq (05) échantillons marqués est renversé dans la bâche à homogénéiser. L’essai débute à 2% de teneur en eau par ajout aux matériaux d’une quantité d’eau correspondant à 2% de la masse de l’échantillon consigné sur l’étiquette. Étant donné que la masse volumique de l’eau est de un kilogramme par litre (1Kg/L), la quantité d’eau à ajouter correspond directement au volume mesuré dans l’éprouvette graduée. Le matériau est ensuite malaxé jusqu’à obtention d’un mélange homogène. Deux tares y sont directement prélevées pesées et mises à l’étuve pour la détermination de la teneur en eau. L’essai Proctor modifié est compacté en cinq (05) couches à raison de cinquante-six (56) coups par couche. Le matériau est dit compacté à 100%. Après le compactage de la dernière couche, on s’assure que le matériau a dépassé le moule d’environ un centimètre (1cm), puis on arase délicatement en commençant par le centre. On ôte l’embase et le disque d’espacement puis on pèse le moule contenant le matériau compacté et arasé. On renouvelle l’opération en variant de façon croissante la teneur en eau. On passe ainsi de 2% à 4%. NOTA : Par expérience la teneur en d’eau est atteinte lorsque le matériau humidifié a une certaine prise. Les feuilles d’essai en annexe7, l’analyse et l’interprétation des résultats au chapitre III. II.A.4.2 Essai CBR a) Définition et but de l’essai Le California Bearing Ratio test (CBR) est un essai de portance (aptitude des matériaux à supporter les charges) des remblais et des autres couches des ouvrages routiers. Selon les trois (03) types d’essais CBR, on distingue: l’indice CBR immédiat, l’indice CBR après imbibition et l’indice CBR portant.
  • 23. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF L’essai CBR immédiat est une mesure de résistance au poinçonnement d’un sol compacté à sa teneur en eau naturelle. Il sert directement de référence dans les régions peu variation hydrique considérable. Le but de cet essai est de déterminer expérimentalement des indices portants (IPI, ICBR) qui permettent d’établir une classification des sols (GTR), d’évaluer la traficabilité des engins de terrassement(IPI), déterminer l’épaisseur des chaussées (CBR augmente b) Principe de la méthode La charge apportée par le pneu sur la chaussée poinçonne le sol de fondation. Ce poinçonnement est d’autant plus petit que l’épaisseur de la chaussée est grande. L’immersion pendant 4 jours dans de l'eau correspond aux conditions hydriques la vie de l’ouvrage. Une charge d’environ la charge de service est ensuite appliquée et on poinçonne le matériau dans des conditions déterminées (vitesse constante et déterminée) tout en mesurant les efforts (F) et les déplacements (Δh) qui en résultent. On obtient la courbe d’essai. Une comparaison de ces résultats avec ceux obtenus sur un sol de référence (californien) est ensuite effectuée. c) Matériel nécessaire une moule CBR, une dame Proctor modifiée, une règle à araser métallique, un disque d’espacement, une bâche d’homogénéisation, une éprouvette graduée (1000ml des tares, une clé mécanique, une étuve de 300°C max, une balance (Kern max 16100g d=0.1g), une poinçonneuse CBR, Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF L’essai CBR immédiat est une mesure de résistance au poinçonnement d’un sol compacté à sa teneur en eau naturelle. Il sert directement de référence dans les régions peu Le but de cet essai est de déterminer expérimentalement des indices portants (IPI, ICBR) qui d’établir une classification des sols (GTR), d’évaluer la traficabilité des engins de terrassement(IPI), éterminer l’épaisseur des chaussées (CBR augmente ⇒ épaisseur diminue), La charge apportée par le pneu sur la chaussée poinçonne le sol de fondation. Ce poinçonnement est d’autant plus petit que l’épaisseur de la chaussée est grande. L’immersion pendant 4 jours dans de l'eau correspond aux conditions hydriques Une charge d’environ la charge de service est ensuite appliquée et on poinçonne le matériau dans des conditions déterminées (vitesse constante et déterminée) tout en mesurant les efforts (F) et les en résultent. On obtient la courbe d’essai. Une comparaison de ces résultats avec ceux obtenus sur un sol de référence (californien) est ensuite effectuée. une dame Proctor modifiée, une règle à araser métallique, une bâche d’homogénéisation, une éprouvette graduée (1000ml : 10± 5,20°C), une balance (Kern max 16100g d=0.1g), 16 L’essai CBR immédiat est une mesure de résistance au poinçonnement d’un sol compacté à sa teneur en eau naturelle. Il sert directement de référence dans les régions peu humide, sans Le but de cet essai est de déterminer expérimentalement des indices portants (IPI, ICBR) qui épaisseur diminue), La charge apportée par le pneu sur la chaussée poinçonne le sol de fondation. Ce poinçonnement est d’autant plus petit que l’épaisseur de la chaussée est grande. L’immersion pendant 4 jours dans de l'eau correspond aux conditions hydriques prévues pendant Une charge d’environ la charge de service est ensuite appliquée et on poinçonne le matériau dans des conditions déterminées (vitesse constante et déterminée) tout en mesurant les efforts (F) et les en résultent. On obtient la courbe d’essai. Une comparaison de ces résultats
  • 24. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 17 deux disques de surcharge. d) Mode opératoire (NFP 94-078)  Le compactage L’échantillon (mélange des trois (03) points marqués provenant de l’échantillonnage) est renversé dans la bâche à homogénéiser. L’essai débute à l’optimum Proctor modifié, C’est-à-dire qu’on ajoute aux matériaux une quantité d’eau correspondant à la teneur du matériau déterminé à l’optimum Proctor modifié. Le matériau est ensuite malaxé pour être rendu homogène, puis la bâche à homogénéise est recouverte sur elle-même pour limiter les pertes d’eau par évaporation. Le compactage s’effectue en cinq (05) couches. Le principe de compactage est identique à celui de l’essai Proctor modifié. Après compactage de la dernière couche, on s’assure que le matériau à dépasser le moule d’environ un centimètre (1cm), puis on arase délicatement en commençant par le centre. On ôte l’embase et le disque d’espacement puis on vérifie que la masse moule contenant le matériau compacté et arasé, est approximativement identique à celle obtenue théorique connaissant le volume du moule, l’eau de moulage et la densité du matériau. Pendant le compactage, des tares sont prélevées directement dans le bac à homogénéisation et pesés pour la détermination de la teneur en eau. L’opération est ainsi effectue avec une énergie de compactage de dix (10), vingt-cinq (25) et cinquante-six (56) coups.  L’imbibition L’opération d’imbibition est réalisée comme suit : Après avoir pesé l’ensemble moule (retourné) + embase + échantillon (compacté et arasé), on place successivement un disque en feuille de papier qui servira de filtre et une charge constituée par des disques annulaires de 2.265Kg représentant l’équivalent de la contrainte imposée par la chaussée sur la plate-forme. Le tout est immergé pendant quatre (04) jours (soit 96h dans un bac rempli d’eau), la plaque de base étant un peu écarté du fond pour permettre le passage de l’eau.  Le Poinçonnement Pour le poinçonnement, la poinçonneuse utilisée est de type manuel muni d’un piston de poinçonnement de diamètre 4.96cm et de deux (02) comparateurs : un de cadence et Poinçonneuse manuelle
  • 25. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 18 l’autre permettant suivre l’enfoncement du piston de 19,35 cm2 de section. Un opérateur effectue un mouvement régulier de rotation de la manivelle de la poinçonneuse (manuelle), pendant qu’un second note les valeurs de l’enfoncement en fonction des valeurs prédéfinies de cadence. Il en est de même pour tous les trois (03) moules. Les feuilles d’essais en annexe8, l’analyse et l’interprétation des résultats au chapitre III. II.A.5 Section Produits hydrocarbonés II.A.5.1 Essais d’identification de bitume Ces trois essais permettent de déterminer les caractéristiques intrinsèques d’un bitume pur à savoir sa densité relative, son point de ramollissement et sa pénétrabilité afin de déterminer sa classe. Les feuilles d’essais en annexe9, l’analyse et l’interprétation des résultats au chapitre III. II.A.5.1.1 Détermination de la densité relative à 250 C, méthode au pycnomètre Afin de rendre le liant suffisamment fluide (le ramollir), il est légèrement chauffé en ayant soin d'éviter toute perte de matières volatiles. Après avoir pesé le pycnomètre propre et sec, muni de son bouchon (masse P1), le remplir précautionneusement avec l'eau distillée, mettre le bouchon en place et s'assurer que le pycnomètre soit bien rempli sans présence de bulle d'air (masse P2). Introduire l'échantillon de bitume dans le pycnomètre en évitant la formation de bulles d'air. L'échantillon doit remplir entre ½ et ¾ du volume apparent total du pycnomètre. Le pycnomètre contenant le liant est ensuite refroidi pendant 1h jusqu'à la température du laboratoire et pesé au 0,1 mg près (masse P3). On place ensuite le pycnomètre rempli du mélange non miscible d’eau et bitume dans un bain thermostatique à 25°C pendant 30mn et on ajuste si nécessaire le niveau d'eau du pycnomètre au moyen de l'eau distillée à (25 °C) et en remettant le bouchon en place. Retirer le pycnomètre du bain et essuyer immédiatement le sommet du bouchon d'un coup de serviette. Essuyer et sécher le reste de la surface extérieure du pycnomètre et le peser au 0,1 mg près (masse P4). II.A.5.1.2 Détermination du point de ramollissement (méthode bille et anneau) Pour se faire un échantillon fluidifié par chauffage est versé dans deux anneaux, reposant sur une plaque enduite de vaseline. On les laisse se refroidir en 30 mn, raser ensuite l’excès ( aplanir) avec une spatule avant de placer l’ensemble dans un vase d’eau distillée à 5°C + -1° durant 15 mn. Puis on mesure la température à laquelle une bille d’acier, placée à la surface
  • 26. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 19 du produit contenu dans chaque anneau de métal, tombe d’une hauteur déterminée après avoir traversé le produit progressivement ramolli sous l’effet d’une élévation de température par chauffage effectuée à vitesse constante (5°C/mn).On prend la moyenne des deux températures. NOTA : Le matériel utilisé est à la même température que la prise d’essai. II.A.5.1.3 Détermination pénétrabilité à l'aiguille On place la prise d’essai (25°C) sur le pénétromètre en plaçant l’aiguille chargée à 100g de sorte à ce qu’elle affleure sa surface . Régler l’aiguille à 0, la libérer pendant 5 s, la bloquer et mesurer sa profondeur d’enfoncement. La valeur retenue sur chaque coupelle est la moyenne de trois déterminations ne sortant pas d’une étendue de 3. a) Matériel nécessaire pour les trois essais une balance de précision +thermomètre un pycnomètre +plat pour bain thermostatique+réfrigérateur+eau distillée un appareil Bille Anneau +plaque chauffante un pénétromètre à bitume Point de ramollissement Pénétrabilité II.A.5.2 Essai Kumagawa L’essai à pour objet la détermination de la teneur en bitume des enrobés. a) Principe L’essai de détermination de la teneur en bitume d’un enrobé par la méthode Kumagawa consiste à laver l’enrobé dans l’appareil Kumagawa avec un solvant ‘perchlore’ qui désolidarisera complètement le bitume des granulats par dissolution à chaud au cours d’une distillation sous reflux. b) Matériel nécessaire une étuve une balance un appareil Kumagawa
  • 27. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 20 un solvant une cartouche+papier filtre normalisé c) Mode opératoire Un échantillon d’enrobé est pesée puis passé à l’étuve réglée à 120° C pour le ramollir. On pèse séparément le filtre+cartouche et le filtre seul. On verse ensuite l’échantillon dans la cartouche et on pèse filtre+cartouche+enrobé .Puis monter soigneusement le décanteur, le collier, le réfrigérant et l’alimentation en eau. On place le tout dans l’appareil Kumagawa mis en marche pendant au moins 4h avec 2l de solvant. Au fait on attend que l’enrobé soit lavé jusqu’à ce que le liquide qui s’écoule avec le bitume devienne clair. On transfère alors le filtre+cartouche+enrobé dans l’étuve. Après séchage on procède aux différentes pesées qui vont permettre de calculer les teneurs en bitume par rapport à l’enrobé et par rapport aux granulats. On effectue généralement sur les granulats propres et séchés une analyse granulométrique. NOTA : L’eau n’est pas recueillie donc pas de teneur en eau. Les feuilles d’essais en annexe10, l’analyse et l’interprétation des résultats au chapitre III. II.A.5.3 Essai Marshall a) Définition et but de l’essai Par définition, le quotient Marshall est le rapport S/F entre la stabilité S et le fluage F. C’est un essai permet de déterminer pour une température et une énergie de compactage données, les caractéristiques physique et mécanique: le pourcentage de vide, la résistance mécanique dite « stabilité », l’affaissement dit « fluage » et le quotient Marshall des éprouvettes d’un enrobé bitumineux à chaud. b) Principe L’essai consiste à la confection d’éprouvettes cylindriques d’enrobé compactées selon un mode de compactage dynamique (analogue au Proctor, avec une dame Marshall à raison de 50 coups par face) puis à les soumettre à des essais physiques et mécaniques Marshall (mesures géométriques, pesée hydrostatique, compression diamétrale).L’essai est réalisé avec trois éprouvettes. c) Matériel nécessaire une balance munie d’un crochet pour pesée hydrostatique  une étuve une dame Marshall : hauteur de chute de 460mm trois moules Marshall un bain thermostatique une presse Marshall Anneau dyn. 60 KN + Mâchoire d’écrasement + Fluagemètre
  • 28. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 21 d) Mode opératoire (NF P 98-251-2)  Préparation de l’échantillon Le mélange hydrocarboné ou enrobé est fabriqué en laboratoire suivant la norme à la température de référence ou prélevé sur le chantier en général par carottage. L'échantillon, dans un plat est mis à l'étuve à 150°C pendant 1h environ pour le ramollir ainsi que les accessoires de l'essai (moule bien enduit de vaseline).  Exécution de l’essai 1 2 3 4 5 1. Echantillon homogène préparé. 2. Peser et introduire une quantité m environ 1200g dans le moule après avoir placé un disque de papier en fond de ce dernier, et l'avoir enduit légèrement et mis en place la hausse. Un disque de papier est placé au dessus de la quantité. Ensuite l'éprouvette est immédiatement compactée en appliquant 50 coups en 55s de marteau de la dame sur la face supérieure et vis versa pour la face inférieure. 3. Après avoir refroidi l'éprouvette à jet d'eau froide circulaire sans la mouiller, conserver le moule pendant 1h au moins à température ambiante et la démouler (le démoulage est effectué en faisant passer l'éprouvette du moule dans la hausse à l'aide d'un piston extracteur). La masse volumique apparente MVa est calculée à partir des mesures géométriques portées sur l'éprouvette à l’aide d’un pied à coulisses. 4. Détermination de la masse puis son volume apparent par pesée hydrostatique sans paraffinage de sa surface. En application de la loi d'Archimède, on déduit la masse volumique apparente de l'éprouvette. 5. Conserver l'éprouvette 4h au moins à température ambiante, immerger l'éprouvette et la mâchoire d'écrasement dans un bain marie à 60°C pendant 40mn sans dépasser 1h ; puis placer l'éprouvette dans la mâchoire et porter l'ensemble entre les plateaux de la presse ; d'où elle sera soumise à l'effort de compression à une vitesse de déformation de 50mm/mn. On lit les valeurs de
  • 29. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 22 S enregistré et F à l’aide du comparateur. Les feuilles d’essais en annexe12, l’analyse et l’interprétation des résultats au chapitre III. II.A.5.4 Essai Duriez a) But L’essai permet de déterminer pour une température et un compactage donnés, la tenue à l’eau d’un mélange hydrocarboné à chaud à partir du rapport des résistances à la compression avec et sans immersion des éprouvettes. b) Principe Les éprouvettes nécessaires à la réalisation de l’essai sont fabriquées par compactage statique à double effet. Deux éprouvettes sont destinées à la mesure de la masse volumique par pesée hydrostatique, pour calculer le pourcentage de vide. Les autres éprouvettes sont soumises à l’essai de compression après conservation dans des conditions définies ; à l’air pour certaines éprouvettes et à l’immersion pour d’autres. c) Matériel nécessaire une balance munie d’un crochet pour pesée hydrostatique une étuve  un malaxeur Un moule Duriez +entonnoir+piston extracteur+truelle un bain thermostatique une enceinte climatique une presse Duriez d) Mode opératoire (NF P 98-251-1, NF P 98-250-1, NF P 98-250-6)  Préparation de l’échantillon L’enrobé provenant du malaxeur, dans un plat (+le moule enduit de vaseline) est mis à l'étuve pour simuler le vieillissement à court terme. Une fois la température atteinte, la durée du chauffage minimale est de 30 mn et ne doit jamais excéder deux heures.
  • 30. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 23  Exécution 3 4 1 2 5 1. Mise en place de l’enrobé homogène préparé d’environ 1Kg dans le moule à l’aide d’un entonnoir. Dans le moule l’enrobé est encadré par deux disques de papier comme pour l’essai Marshall. 2. Puis on passe au compactage des éprouvettes par compactage statique à double effet sous charge de 60KN atteint en moins de 60s et maintenu pendant 300s (D<14mm) à l’aide de la presse Duriez. On laisse refroidir par jet d’eau, puis on démoule. Par pesée simple et par mesure des 6 côtés géométriques on peut déduire la masse volumique apparente MVa. Par pesée hydrostatique de 2 éprouvettes, on détermine la masse volumique apparente MVA. 3. Les 5 des 12 éprouvettes sont conservées à 180 C à l’air, leur masse est prise chaque jour. 4 .Les cinq autres sont conservées à 180 C en immersion dans l’eau. 5. Au bout de 8 jours (J+8), elles sont écrasées sous une presse Marshall (sans les mâchoires d’écrasement) à vitesse de 1mm/s et on mesure la résistance à la rupture à la compression à « l’air » et à « l’eau ». NOTA : Dans notre cas on n’a utilisé que 10 éprouvettes. L’essai se pratique à 18 °C, il peut être pratiqué à d’autres température 0 et 50 °C pour permettre d’appréhender une forme de susceptibilité thermique du mélange hydrocarboné. Les feuilles d’essais en annexe11, l’analyse et l’interprétation des résultats au chapitre III.
  • 31. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 24 II.B Chantier : Travaux de construction et de bitumage de la route RD 152 OUAGADOUGOU- NIOKO- SAABA y compris les bretelles d’accès au CSPS et à l’université SAINT THOMAS D'AQUIN II.B.1 Revêtement II.B.1.1 Couche d’imprégnation C'est une couche de protection qui repose sur la couche de base dont le rôle est de contribuer à l'amélioration de la chaussée et renforce la protection mécanique, thermique et hydraulique par imperméabilisation. Elle est exécutée de la manière suivante : balayer la couche de base avec une balayeuse mécanique complété au balai à la main de façon à éliminer les matériaux non solidaires et la poussière résiduelle, arroser (légère humidification de la couche), enfin épandre uniformément le bitume fluidifié (cut-back 0/1) à une température comprise entre 350 et 500 C. La couche d’imprégnation est appliquée sur toute la largeur de la plateforme et pénètre de 1cm la couche de base préalablement réceptionnée. Arrosage à la citerne Imprégnation avec la bouille II.B.1.2 Enduit superficiel Structure et granularité La chaussée étant à faible et moyen trafic, la structure est une bicouche composée d'une couche de liant qui du bitume pur de classe 50/70 puis d'une couche de gravillons (10/14) suivie par une couche de liant puis une couche de gravillons (6/10) et enfin on compacte. Le choix de la granularité a été fonction de la structure et des objectifs visés : adhérence, étanchéité, bruit de roulement : les petites granularités (6/10) sont plus favorables à la diminution du bruit de roulement et à une meilleure adhérence à faible vitesse, les grosses granularités (10/14) apportent une meilleure drainabilité. Ces granulats sont obtenus par concassage et criblage de roches massives (granite) dans des carrières. Mise en œuvre Après un temps de séchage de 48 heures de la couche d’imprégnation, et un nettoyage d’éventuelles ordures, le bitume et les gravillons sont respectivement mis en œuvre sur toute la largeur de la plateforme par la bouille et le gravillonneur puis on compacte.
  • 32. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 25 Avant Après Densitomètre Epandage du gravillon Compactage faisant suite faisant suite à l’épandage du liant. à l’épandage du gravillon. Le compactage Enfin les compacteurs interviennent pour assurer la mise en place des granulats et leur enchâssement dans le film de bitume. Le compactage est la première des protections contre l’agression de l’eau. Il est un objectif important pour la couche de roulement, évitant les désordres sur les couches inférieures. Diminution du volume V, Poids P constante, ῥ= P/V augmente Tassement II.B.2 Les contrôles préalables II.B.2.1 Mesure de densité in-situ a) Définition et but de l’essai Le densitomètre à membrane est un appareil de mesure de la densité après compactage ; la mesure de densité in-situ est une opération de contrôle du compactage. Elle est relativement simple et s’effectue in situ sur toutes les trois (03) couches de la chaussée (forme, fondation, base). Le but de cette opération est la mesure des masses (poids) volumiques (humides et sèche) des couches après leur compactage. b) Principe de la méthode L’opération consiste dans un premier temps, à creuser un trou dans la couche dont on désire mesurer la densité et, de mesurer le volume du trou à l’aide d’un densitomètre à membrane ; puis dans un second temps à déterminer le poids humide et sec ; informations à partir desquelles on déduit aisément la densité.
  • 33. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 26 c) Matériel nécessaire trois (03) serres joints métallique de type crampon, une truelle de maçon, un marteau d’environ 1 kg pour fixer les serre-joints, une tenaille pour les retirer, un burin pour creuser le trou, une louche de cuisine et cuillère de laboratoire et pinceau pour récupérer le matériau, une règle graduée pour mesurer la profondeur du trou, un seau avec couvercle, une balance mécanique, une bouteille de gaz butane + réchaud pour le séchage in-situ. d) Mode opératoire  Préparations précédant l’opération Avant le début de l’opération, il convient de dresser soigneusement l’emplacement où l’on désir effectuer la mesure. On pourrait se servir de la truelle de maçon. Ensuite, il faudrait fixer la base amovible du densitomètre au moyen des serres joints de type crampons. Il faudrait aussi éliminer toutes les bulles d’air du densitomètre par le bouchon purgeur, bien sûr après avoir vérifié la membrane et remplir l’appareil d’eau si nécessaire.  Exécution de l’essai Mettre l’appareil en place sur sa base amovible Une fois celle-ci fixée. Appuyer sur la poigné jusqu’au refus : lorsqu’on exerce une pression sur la poignée, la membrane se dilate et s’appuie sur la surface de la couche. On lit alors un volume V1 sur la graduation volumétrique et on ôte l’appareil. Creuser ensuite un trou à travers l’orifice et ayant un même diamètre et une profondeur d’environ 10cm. Recueillir délicatement dans le seau la totalité des éléments extraits et le recouvrir. Replacer l’appareil sur sa base amovible et appuyer de nouveau sur la poignée jusqu’au refus : la membrane épouse parfaitement les dimensions du trou. Lire enfin le volume V2 sur la graduation volumétrique
  • 34. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF Pour plus de pragmatisme, la détermination de la teneur en eau du n’est pas traitée au laboratoire mais sur place. Il est prévu à cet effet du gaz butane pour le séchage. II.B.2.2 Contrôle de l’épandeuse de bitumes fluidifié 0/1 et pur 50/70 Pour déterminer le dosage (taux d’épandage), le liant est recueilli dans des plaques métalliques ou bacs de 20X25 que l’on dépose à chaque passage de la bouille pour recueillir le bitume. Après avoir déterminé le poids du liant Pb dans le bac en tarant la balance, conn surface de la plaque on déduit la quantité en mètre carré (Kg/m formule : Pb/ (20X25). II.B.2.3 Contrôle de l’épandeuse de gravillons Pour déterminer le dosage (taux d’épandage), les gravillons son boîte étalonnée, parallélépipédique d’une face transparente ou boîte doseuse placée sur la route devant gravillonneur, en vue de la détermination du taux d’épandage. pour recueillir les gravillons d’une surface connue. Une fois leur couvercle remis en place, la boîte est redressée verticalement et sert ensuite à mesurer directement le volume (l/m2 ) de gravillons recueillis. L’analyse et l’interprétation des résultats au chapitre III. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF Pour plus de pragmatisme, la détermination de la teneur en eau du matériau recueilli dans le trou n’est pas traitée au laboratoire mais sur place. Il est prévu à cet effet du gaz butane pour le Contrôle de l’épandeuse de bitumes fluidifié 0/1 et pur 50/70 le dosage (taux d’épandage), le liant est recueilli dans des plaques que l’on dépose à chaque passage de la bouille pour recueillir le bitume. Après avoir déterminé le poids du liant Pb dans le bac en tarant la balance, conn surface de la plaque on déduit la quantité en mètre carré (Kg/m2 ) i.e. le taux de bitume par la Contrôle de l’épandeuse de gravillons Pour déterminer le dosage (taux d’épandage), les gravillons sont recueil boîte étalonnée, parallélépipédique de 80cmx25cmx4cm, munie d’un couvercle coulissant et ou boîte doseuse placée sur la route devant gravillonneur, en vue de la détermination du taux d’épandage. Posée à plat avec un couvercle retiré, la boîte sert de bac pour recueillir les gravillons d’une surface connue. Une fois leur couvercle remis en place, la boîte est redressée verticalement et sert ensuite à mesurer directement le volume analyse et l’interprétation des résultats au chapitre III. 27 matériau recueilli dans le trou n’est pas traitée au laboratoire mais sur place. Il est prévu à cet effet du gaz butane pour le le dosage (taux d’épandage), le liant est recueilli dans des plaques que l’on dépose à chaque passage de la bouille pour recueillir le bitume. Après avoir déterminé le poids du liant Pb dans le bac en tarant la balance, connaissant la ) i.e. le taux de bitume par la t recueillis dans une de 80cmx25cmx4cm, munie d’un couvercle coulissant et ou boîte doseuse placée sur la route devant gravillonneur, en vue de Posée à plat avec un couvercle retiré, la boîte sert de bac pour recueillir les gravillons d’une surface connue. Une fois leur couvercle remis en place, la boîte est redressée verticalement et sert ensuite à mesurer directement le volume surfacique
  • 35. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 28 Tableau des dosages du CCTP Plaque doseuse Pesage mécanique Boîte doseuse Revêtement 1ère couche 2è couche Classes granulaires 10/14 6/10 Dosages :  Bitume pur 50/70(Kg/m2 ) 0,8 1,1  Granulats (l/m2 ) 10,5 7,5
  • 36. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF II.C Département sol et fondation II.C.1 Essai de cisaillent direct non drainé non consolidé sur sol argileux a) But et définition Cet essai détermine les paramètres de résistance au cisaillement ‘cohésion et l’angle de frottement) qui permettent d’estimer la contrainte de rupture d’un matériau utile pour les études de stabilité de terrain (talus, fondation su toujours par cisaillement. On reproduit le phénomène au laboratoire. On impose une contrainte normale (σ) puis on cisaille le sol. La valeur de τlim au del laquelle il ya glissement entre le terrain et la semelle est déterminé, par la suite l’angle de frottement) en traçant une courbe. Un sol sec déversé d’une certaine hauteur forme un tas dont la pente ne peut pas dépasser une certaine valeur ϕ : c’est angle de frottement interne du sol. b) Matériel nécessaire une machine de cisaillement +chronomètre une boîte de Casagrande une série de poids une trousse coupante (anneau, couteaux divers) un comparateur Anneau dyn. 3 kN c) Principe L'essai s'effectue sur une éprouvette de sol placée dans une boîte de cisaillement constituée de deux demi-boîtes indépendantes. Le plan de séparation des deux demi glissement correspondant au plan de cisaillement de l'éprouvette. Il consiste à appliquer sur la face supérieure de l'éprouvette un effort normal de compression N, verticalement, par l’intermédiaire d’un piston et un effort tranchant comparateur mesure le déplacement relatif de l’échantillon. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF Département sol et fondation Essai de cisaillent direct non drainé non consolidé sur sol argileux Cet essai détermine les paramètres de résistance au cisaillement ‘cohésion et l’angle de frottement) qui permettent d’estimer la contrainte de rupture d’un matériau utile pour les études de stabilité de terrain (talus, fondation superficielle et profonde). La rupture d'une fondation se fait toujours par cisaillement. On reproduit le phénomène au laboratoire. On impose une contrainte normale (σ) puis on cisaille le sol. La valeur de τlim au del laquelle il ya glissement entre le terrain et la semelle est déterminé, par la suite l’angle de frottement) en traçant une courbe. taine hauteur forme un tas dont la pente ne peut pas dépasser une : c’est angle de frottement interne du sol. une machine de cisaillement +chronomètre coupante (anneau, couteaux divers) un comparateur Anneau dyn. 3 kN L'essai s'effectue sur une éprouvette de sol placée dans une boîte de cisaillement constituée de boîtes indépendantes. Le plan de séparation des deux demi-boîtes constitue un plan de glissement correspondant au plan de cisaillement de l'éprouvette. Il consiste à appliquer sur la face supérieure de l'éprouvette un effort normal de compression N, verticalement, par l’intermédiaire d’un piston et un effort tranchant T, horizontalement, en déplaçant la demi comparateur mesure le déplacement relatif de l’échantillon. 29 Cet essai détermine les paramètres de résistance au cisaillement ‘cohésion et l’angle de frottement) qui permettent d’estimer la contrainte de rupture d’un matériau utile pour les études de perficielle et profonde). La rupture d'une fondation se fait On impose une contrainte normale (σ) puis on cisaille le sol. La valeur de τlim au delà de laquelle il ya glissement entre le terrain et la semelle est déterminé, par la suite l’angle de taine hauteur forme un tas dont la pente ne peut pas dépasser une L'essai s'effectue sur une éprouvette de sol placée dans une boîte de cisaillement constituée de s constitue un plan de glissement correspondant au plan de cisaillement de l'éprouvette. Il consiste à appliquer sur la face supérieure de l'éprouvette un effort normal de compression N, verticalement, par l’intermédiaire T, horizontalement, en déplaçant la demi-boîte inférieure. Un
  • 37. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 30 d) Mode opératoire (NF P94-071-1)  Préparation de l’échantillon L’éprouvette est taillée dans des carottes soigneusement prélevées sur le site à l’aide d’une meule huilée ayant les mêmes dimensions que la boîte de Casagrande. Dans la boîte, les pierres poreuses ou plaques drainantes sont saturées avec de l’eau, l’éprouvette est encadrée par deux disques de papier filtre empêchant les particules fines de migrer vers les pores des pierres poreuses. L’ensemble est immergé dans l’eau 3 à 7jours pour la saturation.  Exécution de l’essai A la machine, l’éprouvette ne subit aucune consolidation, aucun drainage préalable, sous la contrainte normale σ de l’essai. Le piston est sollicité par un levier chargé par des poids de manière à exercer la contrainte normale σ constante. L'effort de cisaillement T (provoquant la contrainte de cisaillement τ croissant jusqu'à la rupture) est exercé par une presse horizontale à vitesse de déplacement constante. Il est lu au moyen d'un anneau dynamométrique. Lire à chaque 15s le déplacement relatif horizontal sur le comparateur. NOTA: L’essai est réalisé avec trois boîtes de cisaillement identiques respectivement aux contraintes normales 0,5bar, 1 bar, 2 bar. On détermine également les teneurs en eau avant et après essai et la masse volumique par pesée hydrostatique par paraffinage. Les feuilles d’essais en annexe17, l’analyse et l’interprétation des résultats au chapitre III.
  • 38. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF II.C.2 Essai œdométrique NF P 94 a) But et définition de l’essai La manipulation a pour but de déterminer les caractéristiques de compressibilité d’un sol qui permettent d’estimer le tassement provoqué par consolidation d’un massif de sol, par exemple sous une fondation superficielle. NOTA : Sous l’effet des charges appliquées, le sol va se déformer : il va subir un tassement. Pour en évaluer l’ampleur on reproduit le phénomène au laboratoire. Les sols présentant de forts tassements sont les sols saturés, les contraintes s’appliquen d’abord à l’eau puis après dissipation des surpressions, au squelette solide. C’est le phénomène de consolidation. b) Matériel nécessaire une balance 1610g+-0,1g une étuve un oedomètre une série de poids fendiés un comparateur c) Principe Le sol est placé dans une enveloppe rigide, on exerce sur sa partie supérieure une pression variable à l’aide d’un piston et on mesure les affaissements observés après stabilisation. On détermine ainsi la relation entre les contraintes effectives e d) Mode opératoire Préparation de l’échantillon est la même que l’essai précédent  Exécution de l’essai Un piston permet d'appliquer sur l'échantillon une contrainte verticale uniforme constante pendant un temps déterminé. On mesure alors la variation de hauteur de l’éprouvette de sol en fonction de la contrainte appliquée. On commence par charger le piston à vide en soustrayant 60 pour avoir 20kg, puis on va directement à 5kg et enfin on décharge totalement jusqu’au piston à vide. On détermine également les teneurs en eau avant et après essai et la masse volumique comme dans l’essai précédent. NOTA: A chaque palier ou chargement, il faut attendre la stabilisation de tassement par dissipation de la pression interstitielle avant de procéder à la lecture. C’est pourquoi dans notre cas on effectue le chargement à chaque 24h après avoir lu le tassement pr Les feuilles d’essai en annexe18, l’analyse et l’interprétation des résultats au chapitre III. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF ométrique NF P 94-090-1 La manipulation a pour but de déterminer les caractéristiques de compressibilité d’un sol qui permettent d’estimer le tassement provoqué par consolidation d’un massif de sol, par exemple sous une fondation : Sous l’effet des charges appliquées, le sol va se déformer : il va subir un tassement. Pour en évaluer l’ampleur on reproduit le phénomène au laboratoire. Les sols présentant de forts tassements sont les sols saturés, les contraintes s’appliquent d’abord à l’eau puis après dissipation des surpressions, au squelette solide. C’est le phénomène de consolidation. 0,1g une série de poids fendiés Le sol est placé dans une enveloppe rigide, on exerce sur sa partie supérieure une pression variable à l’aide d’un piston et on mesure les affaissements observés après stabilisation. On détermine ainsi la relation entre les contraintes effectives et les déformations verticales. Préparation de l’échantillon est la même que l’essai précédent. Un piston permet d'appliquer sur l'échantillon une contrainte verticale uniforme constante pendant un temps déterminé. On mesure alors la variation de hauteur de l’éprouvette de sol en fonction de la contrainte ar charger le piston à vide 2kg puis 5, 10, 20, 40,80 pour avoir 20kg, puis on va directement à 5kg et enfin on décharge totalement jusqu’au piston à vide. On détermine également les teneurs en eau avant et après essai et la masse volumique comme dans l’essai précédent. A chaque palier ou chargement, il faut attendre la stabilisation de tassement par dissipation de la pression interstitielle avant de procéder à la lecture. C’est pourquoi dans notre cas on effectue le chargement à chaque 24h après avoir lu le tassement pr , l’analyse et l’interprétation des résultats au chapitre III. 31 Le sol est placé dans une enveloppe rigide, on exerce sur sa partie supérieure une pression variable à l’aide d’un piston et on mesure les affaissements observés après stabilisation. On t les déformations verticales. On mesure alors la variation de hauteur de l’éprouvette de sol en fonction de la contrainte , 10, 20, 40,80kg et on décharge pour avoir 20kg, puis on va directement à 5kg et enfin on décharge totalement jusqu’au piston à vide. On détermine également les teneurs en eau avant et après essai et la masse A chaque palier ou chargement, il faut attendre la stabilisation de tassement par dissipation de la pression interstitielle avant de procéder à la lecture. C’est pourquoi dans notre cas on effectue le chargement à chaque 24h après avoir lu le tassement précédent. , l’analyse et l’interprétation des résultats au chapitre III.
  • 39. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF II.C.3 Essai pénétrométrique (NF P 94 a) But Le pénétromètre dynamique est un moyen simple, rapide et économique d’investigation des sols in situ. Il permet : d’apprécier de façon qualitative la résistance des terrains traversés, et de prévoir la réaction du sol à l’enfoncement de pieux. de déterminer l’épaisseur et la profondeur des différentes couches de sol. d’effectuer des contrôles de d’estimer une caractéristique de portance, la « résistance dynamique de pointe » pour les essais. b) Principe de l’essai On enfonce dans le sol par battage, un train de tiges de faible diamètre muni à son extrémité d’une pointe perdue, et on mesure le nombre de coups N nécessaires pour obtenir un enfoncement donné. c) Mode opératoire  Préparation des échantillons pour essais Pour avoir des résultats représentatifs du sol vierge, on doit s’assurer que le terrain n’a pas été perturbé au préalable au droit du sondage. Sur un site où un grand nombre de effectués afin d’établir les coupes géologiques. L’axe des sondages est perp essais de pénétration.  Exécution de l’essai  Mettre en place la pointe au pied de la 1ere tige et assembler l’enclume + tige guide mouton  Enfoncer la pointe dans le sol Avec une énergie dynamique constante (mouton de 70Kg tombant d’une hauteur constante de 20 cm), on compte le nombre de coups nécessaires pour enfoncer verticalement le train de tiges jusqu’à une profondeur de 20 cm. Renseignez la fiche de sondage fournie. Poursuivre l’essai jusqu’au refus en ajoutant les tiges nécessaires.  Retirer l’ensemble du matériel du terrain !(En cas d’extraction diffic mécanique avec douille de serrage est disponible). Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF Essai pénétrométrique (NF P 94-115) Le pénétromètre dynamique est un moyen simple, rapide et économique d’investigation des d’apprécier de façon qualitative la résistance des terrains traversés, et de prévoir la réaction du sol à l’enfoncement de pieux. de déterminer l’épaisseur et la profondeur des différentes couches de sol. d’effectuer des contrôles de compactage d’estimer une caractéristique de portance, la « résistance dynamique de pointe » pour les r battage, un train de tiges de faible diamètre muni à son extrémité d’une pointe perdue, et on mesure le nombre de coups N nécessaires pour obtenir un enfoncement Préparation des échantillons pour essais s résultats représentatifs du sol vierge, on doit s’assurer que le terrain n’a pas été perturbé au préalable au droit du sondage. Sur un site où un grand nombre de effectués afin d’établir les coupes géologiques. L’axe des sondages est perpendiculaire à l’ Mettre en place la pointe au pied de la 1ere tige et assembler l’enclume + tige guide mouton nte dans le sol Avec une énergie dynamique constante (mouton de 70Kg tombant d’une hauteur constante de 20 cm), on compte le e coups nécessaires pour enfoncer verticalement le train de tiges jusqu’à une profondeur de 20 cm. Renseignez la fiche de sondage fournie. Poursuivre l’essai jusqu’au refus en ajoutant les tiges nécessaires. Retirer l’ensemble du matériel du terrain !(En cas d’extraction difficile, un dispositif mécanique avec douille de serrage est disponible). 32 Le pénétromètre dynamique est un moyen simple, rapide et économique d’investigation des d’apprécier de façon qualitative la résistance des terrains traversés, et de prévoir la de déterminer l’épaisseur et la profondeur des différentes couches de sol. compactage d’estimer une caractéristique de portance, la « résistance dynamique de pointe » pour les r battage, un train de tiges de faible diamètre muni à son extrémité d’une pointe perdue, et on mesure le nombre de coups N nécessaires pour obtenir un enfoncement s résultats représentatifs du sol vierge, on doit s’assurer que le terrain n’a pas été perturbé au préalable au droit du sondage. Sur un site où un grand nombre de sondages sont endiculaire à l’axe des guide mouton nte dans le sol jusqu’à une profondeur de 20 cm. ile, un dispositif mécanique avec douille de serrage est disponible).
  • 40. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 33 II.D Département structure II.D.1 Etude et fabrication du béton au labo ou in situ Le béton a été formulé théoriquement par la méthode de Dreux-Gorisse pour un affaissement de 5+-1cm. Le dosage est le suivant 84,16Kg de quartz, 50,89Kg de sable 30Kg de ciment CPA45 et 10,29l d’eau. En pratique, l’ensemble est introduit dans la bétonnière dans l’ordre suivant : sable étalé, quartz et ajout progressif des 10,29l d’eau grâce à une éprouvette de 100 ml afin d’homogénéiser et fluidifier le mélange. Un premier essai au cône d’Abrams a donné A=1cm, le dosage a été corrigé en ajoutant 8l d’eau de gâchage pour avoir l’affaissement (5,2cm) escompté. Puis on procède au moulage en huilant le moule cylindrique pour faciliter le démoulage. On remplit le moule en deux couches par piquage (25 coups/couche) avec la tige du cône et les marqué. Après un temps de consolidation de 24h les 9 éprouvettes sont démoulées et passées dans un bain maintenu à 25° C (l’eau jouant le rôle de cohésion) jusqu’aux jours (3,7, 28 jours d’âge) de l’écrasement sorties de l’eau quelques heures avant. II.D.2 Essai d’affaissement au cône d’Abrams a) Principe et but de l’essai L’essai consiste à mouler des troncs de cône en béton (base de diamètre 20 cm, partie haute de diamètre 10cm) pour mesurer la valeur de l’affaissement A en cm et conclure sur la classe S d’affaissement du béton. b) Matériel nécessaire un moule + tige de piquage+ embase un entonnoir un portique de mesure+truelle
  • 41. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 34 c) Mode opératoire (NF EN 12350-2 et NF P 18-451) Entonnoir Tige de piquage Ǿ16 Bras de mesure A Béton 1 2 3 4 Moule tronconique Plaque d’appui Après avoir huiler le moule puis humidifier la plaque, on procède comme suit : 1. Mise en place par piquetage (25 coups X 3) en trois couches au plus tard 2mn après l’arrêt du malaxage 2.Arasement en faisant rouler la tige 3. Soulèvement délicat du moule tronconique 4. Mesure de l’affaissement A Les feuilles d’essais en annexe15, l’analyse et l’interprétation des résultats au chapitre III. II.C.3 Essai de compression a) But Cet essai a pour but le contrôle de la qualité du béton durci. Il s’agit des essais les plus courants. b) Matériel nécessaire un bac de conservation Souffre un appareil de surfaçage une balance mécanique de 100 Kg une presse à béton
  • 42. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 35 c) Mode opératoire (NF P 18-406) F Zones de frettage Cylindres16X32 15X30 25X50 F Provenant de moulage ou de carottage in situ, conservées dans l’eau à 250 C, les éprouvettes cylindriques sont essuyées et pesées, et leurs extrémités sont rectifiées (surfaçage à l’aide de 60% de souffre + 40% de sable fin+l’huile). Centrées sur une machine d’essai étalonnée appelée presse de compression, elles sont soumises à une charge croissante appliquée jusqu’à rupture à une vitesse constante. On mesure généralement à 3 jours, 7 jours et 28 jours la résistance à la compression qui est le rapport entre la charge maximale appliquée et la surface 20 de l’éprouvette : Fi /20 et on prend la moyenne. Ainsi on détermine la classe de ce béton. La feuille d’essai en annexe15, l’analyse et l’interprétation des résultats au chapitre III. II.C.4 Essai de densité apparente des gravillons et sables a) Définition La densité apparente est le rapport entre la masse du matériau et le volume du cube qu’il occupe. En pratique elle est obtenue en faisant la moyenne de trois essais. b) Matériel nécessaire une balance de précision un moule cubique+ bac de réception+plat une règle à araser
  • 43. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF d) Mode opératoire (NF P 18-554/555) 1 Cube de 10,2l 1. La prise d’essai est versée à un débit constant dans un cube de 10200 cm 2000g à l’aide d’un plat placé à une hauteur de 1m avec les mains comme entonnoir au dessus du moule. 2. Le surplus de matériau est arasé à l’aide d’une règle et le cube avec le matériau est pesé. NOTA : Dans le cas du ciment il s’agit du même essai mais à l’aide d’un entonnoir plac au dessus d’un moule de 1l de volume. La feuille d’essai en annexe14, l’analyse et l’interprétation des résultats au II.C.5 Essai Micro-Deval à eau a) But et définition Par définition, le coefficient Micro la masse du passant au tamis de 1,6 mm de l' échantillon après passage en machine sur la masse initiale. Le but de l’essai est la mesure de la résistance à l’usure produite pour certaines roches car elle n’est pas la même à sec ou en présence d’eau. b) Principe de la méthode L’essai Micro-Deval à eau (MD dans un cylindre en rotation, en présence d’eau par frottement entre les granulats d’un échantillon et une charge abrasive. La masse de la charge abrasive varie suivant les classes granulaires. Le degré d’usure est apprécié par détermi généré au cours de l’essai conformément à la norme NF P 18 c) Matériel nécessaire un appareil Micro-Deval des billes de 10mm +-0,5 de diamètre un jeu de tamis 1,6-4-6,3- une étuve une balance de précision un bac ou un plat Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 554/555) 1 2 Règle à araser Cube de 10,2l 1. La prise d’essai est versée à un débit constant dans un cube de 10200 cm3 é à une hauteur de 1m avec les mains comme entonnoir au dessus du 2. Le surplus de matériau est arasé à l’aide d’une règle et le cube avec le matériau est pesé. : Dans le cas du ciment il s’agit du même essai mais à l’aide d’un entonnoir plac au dessus d’un moule de 1l de volume. La feuille d’essai en annexe14, l’analyse et l’interprétation des résultats au chapitre III. à eau Par définition, le coefficient Micro-Deval à eau est le rapport entre la masse du passant au tamis de 1,6 mm de l' échantillon après passage en machine sur la masse initiale. Le but de l’essai est la mesure de la résistance à l’usure produite pour certaines roches car elle n’est pas la même à sec ou en présence d’eau. (MDE) est destiné à appréhender la résistance dans un cylindre en rotation, en présence d’eau par frottement entre les granulats d’un échantillon et une charge abrasive. La masse de la charge abrasive varie suivant les classes granulaires. Le degré d’usure est apprécié par détermination de proportion d’éléments fins, inférieurs à 1,6 mm généré au cours de l’essai conformément à la norme NF P 18-572. Deval 0,5 de diamètre -10-14mm (2 tamis correspondant à la classe granulaire étudiée) une balance de précision 36 Cube de 10,2l de volume, de masse é à une hauteur de 1m avec les mains comme entonnoir au dessus du 2. Le surplus de matériau est arasé à l’aide d’une règle et le cube avec le matériau est pesé. : Dans le cas du ciment il s’agit du même essai mais à l’aide d’un entonnoir placé à 10cm chapitre III. à l’usure produite dans un cylindre en rotation, en présence d’eau par frottement entre les granulats d’un échantillon et une charge abrasive. La masse de la charge abrasive varie suivant les classes granulaires. nation de proportion d’éléments fins, inférieurs à 1,6 mm spondant à la classe granulaire étudiée)
  • 44. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF d) Mode opératoire  Préparation de l’échantillon L’échantillon est tamisé, lavé et séché à 105 10/14 et on prend une masse de prise d’essai de 500g par pesage.  Exécution de l’essai 1 Tambour 2 Appareil Micro 1. Mise en place dans le tambour de 2.Appliquer une rotation de 12000 tours au ta 100 tours/mn en 2h. 3. Retirer la prise d’essai pour lavage au dessus d’u l’aide d’un aimant. 4. Etuvage du refus à 1050 C 5.Pesage du refus (m’en g). Le passant au tamis de 1,6mm sera alors m=500 La feuille d’essai en annexe13, l’ II.C.6 Essai Los Angeles a) But et définition Par définition, le coefficient Los Angeles est le rapport entre la fraction passante au tamis de 1,6 mm de l' échantillon après passage en machine sur la masse initiale. Cet essai a pour but de mesurer la résistance par chocs des éléments d’un échantillon de granulats dont leur propriété pourrait être modifiées lors du malaxage ou le transport en camion. b) Principe Le principe de la méthode consiste à mesurer la quantité d' éléments inférieurs à 1,6 mm produite par fragmentation, en soumettant le matériau à des chocs de boulets à l' intérieur d' un cylindre en rotation. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF Préparation de l’échantillon L’échantillon est tamisé, lavé et séché à 1050 C sur les tamis de la classe granu 10/14 et on prend une masse de prise d’essai de 500g par pesage. Tambour 2 Appareil Micro-Deval 3 4 5 place dans le tambour de : 5kg de billes métalliques calibrées+500g+2,5l d’eau 2.Appliquer une rotation de 12000 tours au tambour hermétiquement fermé par des vis à la vitesse 100 tours/mn en 2h. 3. Retirer la prise d’essai pour lavage au dessus d’un tamis de 1,6mm, les billes sont retirées à l’aide d’un aimant. C 5.Pesage du refus (m’en g). Le passant au tamis de 1,6mm sera alors m=500-m’ La feuille d’essai en annexe13, l’analyse et l’interprétation des résultats au chapitre III. Par définition, le coefficient Los Angeles est le rapport entre la fraction passante au tamis de 1,6 mm de l' échantillon après passage en Cet essai a pour but de mesurer la résistance à la fragmentation par chocs des éléments d’un échantillon de granulats dont leur propriété pourrait être modifiées lors du malaxage ou le transport en camion. Le principe de la méthode consiste à mesurer la quantité d' éléments inférieurs à 1,6 mm produite par fragmentation, en soumettant le matériau à des chocs de boulets à l' intérieur d' 37 C sur les tamis de la classe granulaire choisie Deval 3 4 5 : 5kg de billes métalliques calibrées+500g+2,5l d’eau mbour hermétiquement fermé par des vis à la vitesse 100 tours/mn en 2h. n tamis de 1,6mm, les billes sont retirées à l’aide d’un aimant. m’ chapitre III. Le principe de la méthode consiste à mesurer la quantité d' éléments inférieurs à 1,6 mm produite par fragmentation, en soumettant le matériau à des chocs de boulets à l' intérieur d'
  • 45. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 38 c) Matériel nécessaire un appareil Los Angeles un jeu de tamis 4-6 ; 10-14 ; 15-16 ; 25-31,5 ou encore série de 2 tamis correspondant au borne de la classe granulaire étudier (exemple : si classe granulaire 10/14 alors tamis de 10 et 14 mm seront nécessaires), une étuve (105 ° C ± 5 °), une machine Los Angeles,  un bac destiné à recueillir les matériaux, un tamis de 1,6 mm,  une balance de précision 1 g, 7 à 12 boulets selon la granulométrie (sphère de diamètre 47 mm d' un poids compris entre 420 et 445 g). d) Mode opératoire (NF P 18-573)  Préparation de l’échantillon Tamiser l’échantillon lavé et séché à 1050 C sur les tamis de la classe granulaire choisie 10/14 puis prendre une masse de prise d’essai de 5 kg par pesage.  Exécution de l’essai 1 2 3 4 1. Dans la machine Los Angeles, introduire avec précaution et dans l’ordre, la charge de boulets de la classe granulaire choisie puis la prise d' essai M = 5 000 g. Après la rotation de la machine à 500tours/mn en 15 mn, recueillir le granulat dans le bac. 2. Tamiser le matériau contenu dans le bac sur le tamis de 1,6 mm, le matériau étant pris en plusieurs fois afin de faciliter l’opération et laver le refus au tamis de 1,6 mm. 3 .Egoutter et sécher à l’étuve à 105 ° C jusqu’à masse constante.
  • 46. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 39 4. Pesé ce refus une fois séché. Soit m le résultat de la pesée. Le passant au tamis de 1,6 mm sera alors P = 5000 – m La feuille d’essai en annexe13, l’analyse et l’interprétation des résultats au chapitre III. II.C.7 Essai de traction de l’acier a) But Cet essai a pour but de contrôler la qualité des aciers. Il met en évidence les domaines élastique et plastique de la loi de comportement d’un acier et permet déterminer les états de contraintes et de déformations élastiques dans un acier de dimensions constantes ou variables dans le cas de la traction simple. b) Matériel nécessaire une machine d’essai de traction un comparateur collé sur les éprouvettes un pied à coulisse + décamètre d) Mode opératoire On mesure d’abord les dimensions de l’éprouvette : sa longueur, sa masse, son diamètre moyen de l’éprouvette en faisant la moyenne de trois mesures de diamètre (aux deux extrémités et au milieu) à l’aide du pied à coulisse. L’appareil mis en marche avec la barre accrochée entre ces deux pistons, l’aiguille qui relève la résistance en fonction du temps s’est arrêtée une première fois, la 1ère lecture (début de comportement plastique) est effectuée puis la 2nde lecture (la force de rupture de l’acier) au 2ème arrêt de l’aiguille. La feuille d’essai en annexe16, l’analyse et l’interprétation des résultats au chapitre III.
  • 47. Les essais géotechniques en laboratoire et in situ Wendyam Arsène Flavien DAMIBA: ENSIF 40 Chapitre III : Analyse et interprétation des résultats obtenus NB : Les feuilles de calculs sont en annexe I, s’y reporté pour définition ou plus compréhension. III.1 Paramètres similaires a) Teneur en eau L’analyse de certains essais nécessite des données non seulement sur l’échantillon humide mais aussi sur le même échantillon à teneur en eau nulle. Plusieurs des essais réalisés sont nécessité le passage à l’étuve pour la détermination de la teneur en eau Il est question dans un premier temps de déterminer une masse totale humide Mth ; puis dans un second temps une masse totale sèche Mts après séchage. On détermine alors la masse de l’eau (Mω) : Mω=Mh-Ms Puis, connaissant la masse de la tare (Mtare), on détermine la masse du matériau sec (Ms) : Ms=Mts-Mtare Enfin la teneur en eau (ω) : ω =100* Mω/Ms b) Densité Connaissant le volume V du moule CBR ou du trou de densité en plus des masses Mh et Ms, on détermine la densité. Densité humide (γh) : γh=Mh/V Densité apparente (γd) : γd=Mh/ (1+ ω)*V III.2 Analyse granulométrique (essai d’identification) Avec la masse total (Mtot) et la masse des refus cumulés (Mcum) correspondant à chaque tamis de module AFNOR défini, on détermine : Pourcentage des refus cumulés %refus= Mtot/ Mcum Pourcentage des passants %passant=100-%refus Ces précédents résultats serviront à tracer la courbe granulométrique représentant le pourcentage des passants cumulés en fonction des ouvertures des tamis en diagramme semi logarithmique. Par tamisage La courbe est étalée et continue. Notre courbe nous à donné les valeurs suivantes en terme de pourcentage: 12% de sable et 70% de grave. On en déduit le nom du sol Grave un peu sableux. Par tamisage à sec après lavage cas du sable D’après la courbe, nous avons 89% de sable, 11% de grave donc le nom du sol est : Sable un peu graveleux. D10, D30, D60 représentent respectivement les diamètres des éléments correspondant à 10%, 30%, 60% de tamisât cumulé. D10=0,2 D30=0,3 D60=0,7 Cu=D60/D10 Cc=(D30)2 / (D10*D30) Mdf= (somme des refus cumulés en % des tamis 0,16-0,315-0,63-1,25-2,5-5)/100